362 research outputs found

    Animals, Slaves, and Corporations: Analyzing Legal Thinghood

    Get PDF
    The Article analyzes the notion of legal “thinghood” in the context of the person–thing bifurcation. In legal scholarship, there are numerous assumptions pertaining to this definition that are often not spelled out. In addition, one’s chosen definition of “thing” is often simply taken to be the correct one. The Article scrutinizes these assumptions and definitions. First, a brief history of the bifurcation is offered. Second, three possible definitions of “legal thing” are examined: Things as nonpersons, things as rights and duties, and things as property. The first two definitions are rejected as not being very interesting or serving any heuristic function. Conversely, understanding legal things as property is meaningful, useful, and helps to understand what it means to say that animals are legally things. Defining things as property has certain rather important implications, which are analyzed at the end of the Article. For instance, not everything needs to be either a person or a thing: The historical institution of outlawry involved treating individuals neither as legal persons nor as legal things. One must conclude that the person–thing bifurcation is less fundamental than is often assumed

    Rights, Harming and Wronging: A Restatement of the Interest Theory

    Get PDF
    This article introduces a new formulation of the interest theory of rights. The focus is on ‘Bentham’s test’, which was devised by Matthew Kramer to limit the expansiveness of the interest theory. According to the test, a party holds a right correlative to a duty only if that party stands to undergo a development that is typically detrimental if the duty is breached. The article shows how the entire interest theory can be reformulated in terms of the test. The article then focuses on a further strength of the interest theory, brought to the fore by the new formulation. In any Western legal system, the tortious maltreatment of a child or a mentally disabled individual results in a compensatory duty. The interest theory can account for such duties in a simple and elegant way. The will theory, on the other hand, struggles to explain such compensatory duties unless it abandons some of its main tenets

    Fast & Furious focal-plane wavefront sensing

    Get PDF
    We present two complementary algorithms suitable for using focal-plane measurements to control a wavefront corrector with an extremely high-spatial resolution. The algorithms use linear approximations to iteratively minimize the aberrations seen by the focal-plane camera. The first algorithm, Fast & Furious (FF), uses a weak-aberration assumption and pupil symmetries to achieve fast wavefront reconstruction. The second algorithm, an extension to FF, can deal with an arbitrary pupil shape; it uses a Gerchberg–Saxton (GS)-style error reduction to determine the pupil amplitudes. Simulations and experimental results are shown for a spatial-light modulator controlling the wavefront with a resolution of 170×170  pixels. The algorithms increase the Strehl ratio from ∼0.75 to 0.98–0.99, and the intensity of the scattered light is reduced throughout the whole recorded image of 320×320  pixels. The remaining wavefront rms error is estimated to be ∼0.15  rad with FF and ∼0.10  rad with FF-GS

    Calibrating a high-resolution wavefront corrector with a static focal-plane camera

    Get PDF
    We present a method to calibrate a high-resolution wavefront (WF)-correcting device with a single, static camera, located in the focal-plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane WF sensing algorithm controlling a WF corrector with 40,000 degrees of freedom. We estimate that the locations of identical WF corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter

    In situ reverse transcription: the magic of strength and anonymity

    Get PDF
    In this study, we describe an approach that enables a highly specific, effective and fast detection of polyadenylated RNA sequences in situ at the light and electron microscopy levels. The method developed is based on the incorporation of 5-bromo-2′-deoxyuridine into the growing cDNA strand by means of the reverse transcriptase. We have shown that unlike the previously used deoxyuridine tagged with biotin or digoxigenin, 5-bromo-2′-deoxyuridine is ‘invisible’ in the DNA–DNA duplex but easily detectable in the DNA–RNA duplex. This feature is an important pre-requisite for the correct interpretation of the data obtained, as our results strongly indicate that reverse transcriptase uses DNA breaks as primers efficiently. We have also shown that the replacement of deoxythymidine by 5-bromo-2′-deoxyuridine considerably stabilizes the growing DNA–RNA duplex, thus enabling the one-step detection of polyadenylated RNA in structurally well-preserved cells. The method developed provides a highly specific signal with the signal/noise ratio higher than 130 for permeabilized cells and 25 for conventional acrylic resin sections under the conditions used. When the high pressure freezing technique followed by the freeze substitution is employed for the cell's preparation, the ratio is higher than 80

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    Power transmission lines electromagnetic pollution with consideration of soil resistivity

    Get PDF
    The alternating current (AC) total interference of power lines may pose a threat to personnel and equipment in its vicinity. The main objective of this work is to determine the electromagnetic distribution and induced voltages on human body, equipment, and houses due to the AC total interference for different soil resistivities. The electromagnetic field and induced voltages may cause health problems to the human body and put it at risk. Two main approaches were used to compute the electromagnetic and induced voltages, namely the field approach, which is based on electromagnetic field distribution, and the circuit approach, which uses the circuit grounding analysis to compute the conductive interference and then uses the circuit based models to compute the inductive interference. Human body, steel houses and 10-km-long transmission line were modelled. The soil resistivity was varied, and the induced voltages obtained from both approaches were compared. Soil resistivity and soil structure are important parameters that affect the AC interference level. The results show that the touch voltage increases when the distance between electromagnetic source and human body increases. For high soil resistivity, the danger of the touch voltage becomes more prominent compared to that for low soil resistivity. Power system voltage level and soil resistivity are two key factors influencing the induced voltage level
    corecore