1,907 research outputs found

    Pinch Keyboard: Natural Text Input for Immersive Virtual Environments

    Get PDF
    Text entry may be needed for system control tasks in immersive virtual environments, but no efficient and usable techniques exist. We present the pinch keyboard interaction technique, which simulates a standard QWERTY keyboard using Pinch Glovesâ„¢ and 6 DOF trackers. The system includes visual and auditory feedback and a simple method of calibration

    Radiative proton-antiproton annihilation and isospin mixing in protonium

    Get PDF
    A detailed analysis of the radiative ppˉp\bar p annihilation is made in the framework of a two-step formalism, the ppˉp\bar p annihilates into meson channels containing a vector meson with a subsequent conversion into a photon via the vector dominance model (VDM). Both steps are derived from the underlying quark model. First, branching ratios for radiative protonium annihilation are calculated and compared with data. Then, details of the isospin interference are studied for different models of the initial protonium state and also for different kinematical form factors. The isospin interference is shown to be uniquely connected to the ppˉ−nnˉp\bar p - n\bar n mixing in the protonium state. Values of the interference terms directly deduced from data are consistent with theoretical expectations, indicating a dominant ppˉp\bar p component for the 1S0^1S_0 and a sizable nnˉn\bar n component for the 3S1^3S_1 protonium state. The analysis is extended to the ppˉ→γΦp\bar p \to \gamma \Phi transition, where the large observed branching ratio remains unexplained in the VDM approach.Comment: 34 pages, RevTeX, 2 figures, to appear in Phys. Rev. C; typos correcte

    10^{10}Li spectrum from 11^{11}Li fragmentation

    Get PDF
    A recently developed time dependent model for the excitation of a nucleon from a bound state to a continuum resonant state in the system n+core is applied to the study of the population of the low energy continuum of the unbound 10^{10}Li system obtained from 11^{11}Li fragmentation. Comparison of the model results to new data from the GSI laboratory suggests that the reaction mechanism is dominated by final state effects rather than by the sudden process, but for the population of the l=0 virtual state, in which case the two mechanisms give almost identical results. There is also, for the first time, a clear evidence for the population of a d5/2_{5/2} resonance in 10^{10}Li.Comment: 15 pages, 4 figures, 3 tables. Accepted for publication in Nucl.Phys.

    Hypersonic Flight Mechanics

    Get PDF
    The effects of aerodynamic forces on trajectories at orbital speeds are discussed in terms of atmospheric models. The assumptions for the model are spherical symmetry, nonrotating, and an exponential atmosphere. The equations of flight, and the performance in extra-atmospheric flight are discussed along with the return to the atmosphere, and the entry. Solutions of the exact equations using directly matched asymptotic expansions are presented

    Optimum maneuvers of hypervelocity vehicles

    Get PDF
    Optimum maneuvering of glide vehicle at hypersonic speed

    Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    Get PDF
    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position

    Solution of the exact equations for three-dimensional atmospheric entry using directly matched asymptotic expansions

    Get PDF
    The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations

    Analytic theory of orbit contraction

    Get PDF
    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory
    • …
    corecore