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CHAPTER 1

PLANETARY ATMOSPHERES AND AERODYNAMIC FORCES

1-1. INTRODUCTION

To study the effects of aerodynamic forces on trajectories at orbital :
speeds, it is necessary to model the planetary atmospheres in which the flights
take place. Because of the nature of the aerodynamic forces on orbiting and
entry vehicles, only a very thin layer of atmosphere near the planet's surface
need be considered. This is convenient, for in these lower reaches of the at-
mosphere’ the modeling is much simpler.

Many of the more complicated aspects of planetary atmospheres are of no
consequence in aerodynamic calculations. For instance, though the atmosphere
is composed of a mixture of a number of gases, it may be treated as a uniform
gas of unvarying composition throughout the éerodynamically important altitudes.

In fact, the overriding feature of the atmosphere, as far as its effect on
the—spacecraft is concerned, is the-density. The—particular composition-of the
atmosphere can have an important influence on the aerodynamic heating of the ve-
hicle because of the details of the dissociation of the gas after passing through
the vehicle's bow. shock wave, bul the manner in which this is treated im this
text accounts for this very simply. Once a particular reference value'of aero-
heating is determined, the other values are proportional.

The effect of composition on aerodynamic force is negligible. Hence, the
concern in modeling the atmosphere will be to conveniently and accurately repre-

sent the density.

i-2. TFUNDAMENTAL ASSUMPTTIONS

There are several important assumptions which may be made with respect to



1-2

any planetary atmosphere. These assumptions will be considered with the goal
of providing an analytical representation which lends itself to ease of manipu~
lation while maintaining reasonable accuracy. TFor high accuracy, tables of
density such as in Ref. 1 and detailed models as discussed in Ref. 2 and 3

may be used for particular numerical cases.

1-2.1. Assumption of Spherical Symmetry

By far the greatest simplification in analytical atmospheric modeling is
achieved by assuming that the atmospheric density is a function only of radial
distance from the center of the planet — the assumption of spherical symmetry.
Actually, a much better assumption is that the demsity is a function only of
altitude. If the planet's surface wefe a sphere, then these assumptions would
be identical. But the basic figure of all the planets is an oblate spheroid,
which has an elliptical cross-section along any meridian. TFor example, the
Earth's ellipticity, the eccentricity of this cross-sectional ellipse, is
0.00335, Table 1-1.

This oblateness of the atmosphere is the greatest deviation from spherical
symmetry. However, the tremendous analytical advantages of this assumption
justifies this penalty in‘accurécy. This shortcoming can be easily corrected
when necessary. The spherically symmetric model atmosphere is presented as a
function of the altitude above the planet's mean sphere. This same density vari-
ation is then used as a function of the altitude above the planet's basic oblate
spheroid.

This is almost equivalent to assuming the density is conséant on surfaces
of spheroids with the same ellipticity as that ¢f the planet, and similarly
aligned, For example, for Earth if the &ensity at 300 kilometers altitude is
referred in this manner to the surface spheroid, it will deviate from a similar
spheroid by less than a kilometer (being high at the poles, and conversely low

at the equator).
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For planets with small ellipticity, the reference spheroid can be conveni-
ently approximated with error 62, by
, 2
r =T 1 -¢€ sin” o) (1-1)
where Tm is the equatorial radius, ¢ is the ell}pticity, and ¢ 1is the
latitude.

For particular cases, the oblateness of the atmosphere can be included in
this way. However, the complications introduced are severe, and general results
are obscured. This approach can be seen in Ref. 4.

Another source of deviation from spherical symmetry is the reaction of the
atmosphere to solar activity. At extremely high altitudes the density increases
drastically in response to solar radiation. This shows up in several ways -—-—as
a diurnal hump of dense atmosphere which follows the Sun as the Earth rotates,
as a seasonal density increase which follows summer morth and south, as a 27 day
cycle responding to a particular solar flare on the rotating surface of the Sun,
and as a long period variation corresponding to the eleven year sunspot cycle,

Only rarely do any of these effects descend below 250 kilometers altitude.
Since aerodynamic forces are of short-term importance only below about 150
kilometers, these effects are négligible except when considering the slow decay

of a high altitude satellite.

1-2.2. Assumption of Nonrotating Atmosphere

The atmosphere which the space vehicle encounters is not stationary, but
rotates with the planet. For Earth and Mars the aerodynamic forces have im~
mediate effects only at low altitudes, wvery near the surface. At these altitudes
the atmosphere rotates with approximately the angular velocity of the planet.
Venus has a denser atmosphere with a much greater effective thickness, but its
angular velocity is almost nil, and the rotation of the atmosphere is miniscule.

Only on Jupiter and Saturn, of the readily reachable planets, with their fantastic
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rotational speed, turbulent atmosphere, and lack of a well-defined surface, would
the rotating atmosphere deserve special treatment. For the other planets, the
speed of the atmosphere past the vehicle contributed by the rotation of the
atmosphere is a small percentage of the total speed, Table 1-1.

For example, for Earth, the maximum rotational speed of the atmosphere, .
encountered at the equator, is about-six percent of the circular orbital
veloeity at low altitude. Thus, the aerodynamic force due to atmospheric
rotation has a maximum value of about twelve éercent of the aerodynamic
force due to the vehicle's speed. Ia most circumstances it would be far less
than this.

It is possible to treat this effect analytically, However, just as for
the oblateness of the atmosphere, the rotational effect would depend omn the
latitude of the vehicle at all times. In addition, it would depend heavily
on the inelination of the trajectory to the equator. Inclusiom of such detail
in an analytical study would do more to obscure than reveal general trends and
effects.

An example of such treatmenp‘is wgll—presented in Ref. 4. The effects
are so slight, however, that they may easily be accounted for by slight
changes in the coefficients of 1ift and drag for a vehicle. Indeed, the errors
in such coefficients probably would already exceed the error caused by neglect-
ing the rotation of the atmosphere. .

For all of these reasons, it is usual to assume a nonrotating atmosphere.

The assumption is certainly justifiable.
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Ellipticity of surface rotaticnal speed
basic sphercid, € circular orbital speed at surface
Venus 0. 0%
_Earth 0.0034 6%
Mars 0.0052 7%
Jupiter 0.062 30%
Saturn 0.096 40%

Table 1-1. Relative effects of oblateness and rotation of the atmosphere
on aerodynamic force,

1-2.3. Assumption of Exponential Atmosphere

A powerful assumption, greatly simplifying atmospheric analyses, which is
frequently made, is that the atmosphericdensity decreases exponentially with
altitude. There are several nuances to this assumption which are worth inves-
tigating.

There are two basic equations governing the density as a function of alti-

tude. The first is the familiar equation of state

%
P:p%'}'_‘ . (1_2)

%

where R is the universal gas constant, 8.31439 x 103 joules/kg - 0K, and M
is the mean molecular weight of the atmosphere. The second basic equation ex~
presses that the rate of change of pressure must equal the increased weight of

the atmospheré supported, as the altitude changes.
dp =-pg dr (1-3)

From the equation of state comes

p P T

which, combined with Equation (1-3), gives .
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do _ gM 14T

0 [ e T a1 9 (1-5)
This equation'can be rewritten as

%? =-8 dr (1-6)

where B, defined as the bracketed term in Equation (1-5), is the reciprocal

of the scale height.
At this point several specific types of density atmospheres, corresponding

to different assumptions on B, are to be considered.

a) the locally exponential atmosphere.
Tf the coefficient P c¢an be considered constant over some small altitude

interval, the integrated density function is

= o Blrry) (1-7)

'O'D

0

from which the character of 1/B as a scale height is apparent. The coefficient

B is evaluated at the initial, or reference, point indicated by subscript zero.

b) the strictly exponential atmosphere.
If B can be considered constant throughout the atmosphere, the equation
(1-7) holds for all r. In this case the reference level is commonly taken to

be the surface of the planet.

¢) the isothermal atmosphere.
If the temperature can be considered constant through an altitude interval

of the atmosphere, dT/dr = 0, and B is given by

B =5~ ' (1-8)
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Since

g% g (";— ) s (1-9)

. 2 .
the quantity Br 1is constant in an isothermal atmosphere. Again, the density

is given by the exponential function, equation (1-7).

d) the Br - constant atmospherea.

In several studies of atmospheric entry (Ref. 5,6), it has been comvenient
to consider the dimensionless quantity Br as constant. For all the planets
this is a large quantity, usually of the order 1000, Table 1-2, In this
case, the difference introduced into equation (1-6) is additive, of the order
of 1/Br. Thus, the exponential atmosphere may be retained while considering
Br to be constant.

For Earth, the scale height at altitudes below 120 km, stays between
about 5 kin and 14 km, with a weighted mean value of about 7.1 km. The quantity

Br varies from 750 to 1300, with a weighted average of 900.

Avg., scale height, 1/8 Average Br

Venus 6 - 15 km ) - " 500 ~ 900

(2 - 5x104 ft.)

Earth 7.1 km 900
(2.35x10% £e.)

Mars 10.6 km 350
(3.5510" f£t.)

Jupiter 25 km ? 3000 7
(8x104 ft.)

Table 1-2, 8Scale heights of the planets.

i-3, THE EARTH'S ATMOSPHERE

Of course, the primary interest must be focused on the EFarth's atmosphere.
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In ovder to make an analytic study of orbital trajectories encountering the
Earth's atmosphere, it is necessary to have a simple, but accurate, expression
for the density as a function of r. For numerical calculations for particular
cases, using a high speed computer, detailed tables, such as those in Ref, 1,
or polynomial representations, are used, For detailed computations for a spe-
cific vehicle, such an approach is valuable. However, the intimate knowledge
of the Earth's atmosphere which such references make available can be used to
generate more easily used functions. 1In particular, it is convenient to pro-
duce piecewise exponential functions, Ref. 7.

An accurate density function can be obtained by considering the effects on
density of the variation in scale height, H= 1/ , and molecular scale tempera=-
ture, TM'

The molecular scale temperature accounts for both temperature and molecular

weight changes with altitude.

M (1-10)
o

TM =

=13

The standard atmosphere of Ref. 1 shows that both H and TM may be repre-
sented as piecewise linear functions between the altitudes of 54 kilometers
and 300 kilometers, Figure 1-1, which is the region of interest for aerody-
namically affected orbiéal trajectories,

In each of the seven piecewise linear sections the scale height can be

written

=}
mn

=H, +a(zr-r,) (1-11)
i i

T et

and the molecular scale temperature as

TM = 'I‘Hi + b(r-ri) (1-12)

where the subscript i1 indicates the value at some reference point for the
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MOLECULAR SCALE TEMPERATURE (K°)

0 zcl>o 5?0 IOIOO xsloo zoloo
300 60.29 1878, 300
_ /
'/
250 /
~ /
< ).
~ 49.22 . - [I577 207
L 200 )
= /
= /a2t -1175
~ 71323 —isa
< |50
ooldlf 7230.2 , ~io7
/165.7 SCALE HEIGHT o
RE : —-— MOLECULAR-SCALE _
80 -\'65'7 TEMPERATURE 80
60— \ \2s80.2i
8.3416 —154
40 ) | I | i |
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SCALE~-HEIGHT (KM)

Figure l-1. The Scale Height and Molecular Scale Temperature Versus Altitude.
The Values at the Endpoints of the Sections are Noted.
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section under consideration. The reference points are chosen in such a way
that the density expression will give the least deviation from the 1959 ARDC
Model Atmosphere, Ref. 1.

The seven sections and the constants for each are given in Table 1-3. The
constants a are dimensionless; the constants b have dimensions OK/km. if
the altitude above mean sea level is h, then the radial distances r and L
in equations (1-11) and (1-12) can be replaced by h and h; , where h, is
h for a given section,

ref
From the equation of state, (1-2), and the equation defining the scale

height, (1-6), it is seen that

s

=B =-d (lnp) (1-13)
dr :

Differentiating the logarithm of p from the equation of state, using

the definitions of H and TM s and assuming linear behavior for H, (equa-~

tion (1-11)), gives

d In (pTM) Hi + &Gr-ri) (1-14)

which, when integrated, gives

pT H,
M i 1/
In ( ) = 1In( —) 2 (1-15)
piTMi H, + a(r ri)
or, what is the same,
0" T 1:,:'(L YT H%r-r ))ué' (1-16)
Py M, TRy ) Hy Talrtr,

where the linear behavior of T, , equation (1-12), is assumed.

M



Region

Altitude Range

(K)
54 ~ 80
80 ~ 91
91 ~ 107
107 ~ 164
164 ~ 175
175 ~ 207

207 ~ 300

Reference Values Constants

href(KM) pref(Kg/M3> Href(KM) TMref(oK) 2 b-, R/t

67 1.4975-4 6.6597 222,8 -0,1296385 «4.044231

85 7.726-6 4,979 165.7 0,1545455 0,0

99 4.504-7 5.905 195.6 0.1189286  3.878571

110 5.930-8 8,731 288.2 0.5925240 19,17964
170 7.932-10 42,62 féSl. 0.3054545 9.454545
190 4.680-10 46,51 1498. 0.1596875 4.687500
254 1,149-10 54.78 1730. 0.1190323  3.236559

Table 1-3.The Constants a. and b and Reference Values of

hoafp pref’ Href’ TMref for Each Region

T1-1



1-12

By introducing two dimensionless parameters, & and 6T , with the

i M

Earth's mean radius, r ,
e

o
==

il
= |m
o

T, e

r 5 = E‘L . (1-17)
i M M,

i

one arrives at -the basic density equation which takes into account the varia-

tion of scale height and molecular scale temperature:

03 1+ 6 (5T 1+ 6. (Lot
TM re H Ty

-

(1-18)

Values for 6H and 6T in the seven regions are given in Table 1-4.
M

Region GH BTM
I 124,1549 126,0780
I1 1.9797 0.0000
IIT 128.4549 126.4670
v _ 432,8391 424 4544
v 45,7107 43,6648
VI 21,8982 19.9577

Vix 13,8588 11,9322

Table 1-4. The dimensionless parameters GH and 6T

for the Earth's
™ N

Atmosphere (Ref, 7).

A major simplification can be made by noting that GH and GT are ap-
' M

proximately equal in the seven regions. Setting 6T equal to BH in equation
M

(1-18) gives
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1+a
. Ita
g_. =t - ° : (1-19)
1 1 + GH( - l)
a

B = X 2
0 (H) (1-20)

This is the power function density relationship of Billik, Ref. 8, and
shows that it is a special case of the more general density expression,
equation (1-18).

Equations (1-18) and (1-19) with the constants from Table 1-4 yield the

maximum percentage deviations from the 1959 ARDC Model Atmosphere given in

Table 1-5..

Eq. (1-18), gemneral Eq. (1-19), special
" Region density expression density expression

I 0.07% 0.40%

II -0.02% 0.20%

I1I 0.02% 0.25%

Y 0.57% 1.16%

v 0.11% - 0.25%

VI 0.04% ’ 0.52%

VII 0.11% . 1.52%

Table 1-5, Maximum percentage deviation from standard atmosphere.



1-4. HYPERSONIC FLOW

In supersonic flow it is obvious that the velocity of sound is too small
to carry a portion of the flow pattern ahead of the moving body. But with in-
creasing Mach number even the Jateral extent of the flow pattern shrinks to
smaller and smaller Mach angles, until the accumulating gas masses along the
surface of the body have to create local velocities of sound high enough to
keep the gas density finite and the thickness of the layer from shrinking to
zero., The flow around bodies under these conditions, at which the undisturbed
Mach number loses importance and the thermodynamical characteristics of the

-gas at high témperatures gain weight, is called hypersonic flow. Its investi-
gation consgtitutes an important discipline of gasdynamics to which the semior
author of this text has contributed significantly in its early development.

The practical imterest in high performance aircraft, guided missiles, and aero-
dynamically maneuverable spacecraft has brought a new extension to the study of
hypersonic flow in engineering because of all the specific questions to make
their flights feasible and safe. Here we shall summarize only the basic char-
acteristics of hypersonic flcwzto help in evaluating the aerodynamic forces on
a vehicle configuration in order to analyze its motion in the very high speed
range.

Most authors consider as a rough definition of the hypersonic flow regime,
a supersonic flow in which the Mach number exceeds approximately five. Main
characteristics are the followipg: ‘

1/ The shock waves origimating at the leading edge of the body lie close
to the body surface. This results in a strong interaction with the boundary
layer caused by the surface Frickion. ‘

2/ The presence of extreme temperatures in the region between the shock
waves and the body invalidates the ideal gas concept. At low Mach numbers a

diatomic molecule, such as N2 or 02 in air, has five active degrees of
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freedom: three in translation and two in rotation. As the temperatures behind
a shock wave increase with increasing Mach number, the heretofore inert degrees
of freedom (vibration, dissociation, and ionization) are activated, causing
serjous alterations in the thermodynamic properties of the air.

Such complex phenomena create challenging problems. Early reports of
their investigations can be found in many specialized texts, such as Refs. 9
and 10. Here we shall be mainly concerned with the practical importance with
respect to determining the forces acting on bodies at hypersonic speeds uging

the most simplifying assumptions.

1-5. NEWTONIAN FLOW

At very high Mach numbers, appreoaching infinity, the shock waves get
vary close to the body surface, at least for the front part. They would even
get closer to the surface when the thermodynamical degrees of freedom are in-
creagsed toward infinity, for which the ratio of the specific heats vy dis ap-
proaching the valuwe one, It is amazing that for such extremely modern condi-
tions the impact forces of the.gas get close to the analytical description of
the wind forces om buildings 300 years ago by Sir Isaac Newton, who neglected
the thermodynamic movements of the air particles and assumed the free path
length to be infinite. Considering an element of the surface As inclined
under an angle o to the direction of the incident flow, (Fig. 1-2), the mass

of particles which collide with the surface element in unit time is equal to
Am = pAs V sin o (1-21)

where p is the density of the medium and V the speed of the particles. The
force acting on the element As as a result of the collisions depends on the

nature of the interaction between the particles and the body surface. TFor pases
Newton assumed an elastic reflection of the particles on a smooth wall, revers—

ing the normal velocity component V sin o while retaining the tangential
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Fig. 1-2. Newtonian Flow Past Double-Wedge Profile
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component V cos ¢ . However, for what he calls a '"continuous medium" (water,
0il, and mercury), Newton estimated the normal force to be diminished by one-
half, because "the body does not immediately strike against all particles, but
presses only the particles that lie next to it, which press the particles beyond,
which press other particles and so on." This value is exactly the result for
M+ and y * 1l , when the free path is small and no thermodynamical particle
movenents existed before the collision with the body (M = =) nor would be
created at the collision by the energy loss according to the disappearing veloc-
ity component V.sin o because of the infinite number of degrees of freedom
sharing its heat equivalent (y = 1) . Dropping simply the normal velccity
component V.sin ¢ during the collision creates a normal force om the surface

element As
s 2 .2
AF = Am  V.sin g = pV As sin' o (1-22)
Hence we have the Newtonian formula for the pressure coefficient:
C =2sina

It was -first observed by Lees (Ref. 11), that a substantial improvement in the
agreement of the Newtonian calculations with experimental data for symmetric
two—-dimensional and axisymmetric flow can be obtained by modifying the formula
as
¢ sinzd
C o=C 5 T (1-24)
sina,
%
where Cp is the wvalue of the pressure coefficient at the leading edge or
nose of the body, found from the theory of supersonic flow of an ideal gas, and
&) is the angle between the tangent to the body contour and the free-strean
direction. TFor bodies with blunt noses, we have obviously sin Gy = 1l , while
# .
CP as a function of the Mach number M and the ratio of the constant specific

heats y can be obtained with the aid of the normal shock relatioms and the
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Bernoulli integral as

Y/ (v-1) 1/(y-1) .
o) = S5t (— ey -1 a-2s)
PoyM 2yMT -y + 1
For M + » , we have
/ Cy=1) 1/ (y-1)
*_2y+17 v+ 1 _
o, = 25 S (1-26)

If the simple Newtonian impact theory is used, where any static pressure
and skin friction are neglected, the force on the element As dis the impact
pressure force. Newton's theory Implies that only those frontal surfaces exposed
to the flow can contribute to the aerodyﬁamic force, and pressure forceg omn rear
surfaces in the aerodynamic shadow are megligible, (Fig. 1-2). ©Now if we divide
the forces acting normal on every exposed surface element As dinto positive
drag components in the direction of the free~stream velocity and lifting compo-
nents orthogonal to it, then using the simple pressure from Eq. (1-23) at the
surface element inclined at an angle o with respect to the incident velocity,

we have-

(CP)D = Cpsin o =2 sin3a (1-27)

and
(C). =Ccosa=2 sinza éos o (1-28)
p°L P

For this simple body or, integrated over the surface of a complicated body,
Egs. (1-27) and (1-28) give the drag and lift coefficients, CD and CL , L&~

spectively.

1-6. THE DRAG POLAR
On the basis of the simple formulas derived from Newton impact theory, we

can determine the hypersonic aercdymamic characteristics of wedges or cone-like
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bodies when a high degree of accuracy is not required.
As an illustrative example, we shall consider a plame-convex airfoil
whose cross—section has the form of an isoceles triangle (Fig. 1-3). Let 8
be the nose angle of the airfoil and o the angle of attack, defined as the
angle betwesen the base of the trilangle and the direction of Lhe free-stream
velocity. We restrict ourselves to the case of small angles € and o
Consider the case in which both the lower surface and the forward half
of the upper surface are exposed to the flow, (0 < a < 8) . The angle of at-
tack of the lower surface is o while the local angle of attack for the upper

surface is clearly (6 - a)

Fig. 1-3. Triangular Airfoil At Angle of Attack

The lower surface is a flat plate at an incidence o . The 1lift and drag

coefficients are respectively

Cc. = 2&2
Ll
(1-29)
5.3
CD = 20
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The total lift and drag coefficients for the airfoil are evaluated using
the area of the lower surface as a reference area. Since the front area of the
upper surface is practically ecual to half of the area of the lower surface
for small 6 , the contributions of the 1ift and drag coefficients from the

upper surface, considered as a flat plate at an incidence (& - o) , are

- (8 - 0?

0
il

(1-30)
6 - a)’

[
il

The total 1ift and drag coefficients for the complete airfoil are found by simply

adding the separate contributions of the individual surfaces, as long as
02al0

2a2 - (8 - a)z

3]
1

(1-31)

2&3 + (8 - a)3

Il

%

In hypersonic flow, a useful small parameter T , called the thickness ratio
of the body, is defined as the maximum value of the angle between the surface
of the forward portion of the body and the free—stream direction. Here, we de-
fine T = 8/2 , and write the Egs. (1-31)

c

2 -9
2 T T
T (1-32)
287 0-8
3 T T

The second terms in these expressions are valid only for aft <2 . For large
angles of attack, the pressure on the upper surfaces of the airfoil is zero and
the airfoil behaves like a flat plate. Both expressions for CL/T2 and CD/T3
are functions only of the ratio oftr . The plot of CL/'r2 versus CD/T3 is

called the drag polar (Fig. 1-4).



1-21

K9] o
N
o5
~
4
QO
O
-5 | ! |
- 0 10 . 20 30

Cp/7°

Fig. 1-4. Drag Polar For Triangular Airfoil

in Hypersonic Flow

1-7. THE BUSEMAMN FORMULA

FYor the case of a flow over a wedge or axisymmetric cone, the gas particles
move along straight lines in an infinitely thin layer adjacent to the surface
in which the density of the gas ig infinitely large. The pressure on the sur-
face of the wedge and cone coincides with the'pressure behind the shock wave

and is determined by the Newtonlan formula
D= plvzsinza {(1-33)

with subseript 1 denoting the free-stream condition. On a curved body, a
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particle is constrained within the continuum flow in the shock layer to follow
a curved path and the forces required to curve the trajectories of the particles
mugt be taken into comsideration. The result is 2 pregsure difference across
the shock layer equal to the momentum flow in the layer timas the curvature of
the layer. The inclusion of this centrifugal force was first proposed by Buse-
mann who gave formulas for the correction (Ref. 12, pp. 276-277).

Based on the assumptions of inelastic collisioms, v =1 , and the ab-
sence of frictiomal forces, we may assume that the speed of each particle re-
mains unchanged after its collision with the surface and that the particles move
along the geodesic lines of the surface. Under this assumption, we refer to
Fig. 1-5 for the evaluation of the pressure difference in the layer for two-dimen-
sional and axisymmetric flows,

Let us follow the motion of the particles along the surface of the body
after collision. These particles move within an infinitely thin layer depicted
in the figure by the body contour and the dashed line. At the point =x , mea-
sured along the body contour, the pressure difference dp in the infinitesimal
layer composed of particles which have collided with- the—surface near-the point- x

and which have the veloeity u(x”) , is equal to

o~ 2 .
ole,x]) u (x7) 4, (1-34)

dp = R{x)

where R(x) is the radius of curvature of the body at the point x ,'and dn
the thickness of the infinitesimal layer of the deviated gas péfticles, evaluated
along the outward mormal to the surface.

Let F be the cross-sectional area of the body in a plane normal to the
direction of the free-stream Flow. By consideration of the conservation of mass

in the layer, we have

91VdFCx”) = p(x,x”) u(x’) 2(x) dn {1-35)
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Fig. 1-5. Curved Trajectpries of Gas Parricles
Aftay Collisions

For twoe~dimensional flow, 2{x) =1 , and for axisymmetric flow A(x) = Zwy{z)
wvhere r is the radizl ccordinate for the body of revolution.

The radius nf curvature R{x) of the body at the point =z is

igr

R==-3 " 5inade (1-36

TUeiag Bas. (1-35) and {1-38) in Bq. (1-34), we obtain
- ; do - . 137y
do = pl\? 8in o 3 ufx”) &F(x"} (1-37)

Singe the velocity component of a particle tangential to the body surface is un-

algered by the collisica,‘ u{z”} = V eos{a{x"}] . Hence,
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dp = - p,V’sin o 92 cos a(x”) dAF(x") (1-38)

dF
Integrating the equation for dp and taking into account the fact that at the
outer boundary of the layer, p = plvzsinza , we find the pressure on the body
surface to be
2 2 do F
P =0V (¢in"c + sin o Ef'f cos o dF) (1-39)
o
This formula was first given by Busemann in Ref. 12. In recent years, it has
been used by several authors in their investigations of minimum drag bodies at
hypersonic speeds (Ref. 13).
Convex surfaces have a negative value do/dF , and avoid sepafation only
when the pressure is nowhere negative. This implies a finite positive o at

the end of the nose.
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CHAPTER. 2

EQUATIONS FOR FLIGHT OVER A SPHERICAL PLANET

2-1. INTRODUCTION
In this chapter we shall derive the equations of motion of a vehicle con-
sidered as a point mass of mass m flying inside a planetary atmosphere. The

motion of the vehicle is defined by

i

()

V(t)

position vector .
(2-1)

velocity vector

At each instant, it is subject to a total force ¥ composed of the gravitational
-+ >
force mg , the aerodynamic force 2 and a thrusting force T provided by

the propulsion system.
Fetaiems e

With respect to an inertial system, we have the vector equation

.
& _F ' (2-3)

T

2-~2, RELATIVE ANGULAR MOTION

Consider a fixed system 01X1Y121 ,» and another system Oxyz which is
rotating with respect to the fixed system.

Let i s § and k be the unit vectors along the aées qf.the ¥otating
system. Lekt X be any arbitrary vector with components A.X ’ Ay and Az
along the rotating axes. Then

A=ai+aj+ak (2-4)
Since’. Oxyz is rotating, its associated unit vectors 3 s ? and % are

- .
functions of time. Hence, the time derivative of A , taken with respect to

z



- Fig. 2-1. Relative Angular Motion

the fixed system, is

A _ Txryr,_z3 ai it dk -
dt_(’dt l+dt 3+dt k)+CAxdt+Aydt+Azdt> (2-5)

. > - i l - .
Now, a point P with position vector r , fixed in a system rotating with

angular velocity w , will have as linear veleccity (Fig. 2—2j—-

218y

V= Tx T (2-6)

X

> > -> -+
If r is taken as the vector 1 , i and k respectively, we have the

Poisson formulas

d+ > &? i &ﬁ > >
E%-= wxdi a%-= wxj , FHrTUX k (2-7)



Fig. 2-2. Xinematics of Rokation

Using these relations, together with the definition (2-4), it is seen

that the second term on the right-hand side of Eq. (2-5) is

a3 a3 dk _ =
—.3_' —-l —— = -
AT TTA S »x K , (2-8)

-
The First term can be interpreted as the time dexivative of the vector A if

-3 - - . . . -
the vectors i , j and 'k are constant unit vectors. Hence, it is the time

- . d i
derivative of A with respect to the rotating system Oxyz . .We denote it by

+  dA da dA
SA _ _ X1 y T z . -
Eo 9% * + % J + Er k (2-9)

and write the equation (2-5) as

x A (2-10)
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This is the formula for transforming the time derivative of a vector from one

system to another rotating system.

2-3. BASIC EQUATIONS OF MOTION

The Inertial reference frame OXIYJJZIL is taken such that 0 is at the
center of the grawvitational fi=ld of a spherical planet and the OXlYl plane
iz the equatorial plane. The OXYZ reference frame is fixed with respect to

[
the planet, hence it is rotating with an angular velocity © assumed constant

3

and directed along the z-axis (Fig. 2-3).
The vector equation (2-3) is written with respect to the inertial frame.
Tn deriving the equations of motion we shall use the planet-fixed axes as the
reference frame. Hence, putting ~K'= % in Eq. (2-10) and then taking its time
derivative, we have the expression for the absclute acceleration d%/dt .

>
T

.
dr 6r . > =
at t-l-mxr
> > =
dv _ § (8¢ , > = > dr , > =
~ dt—ﬁt[6t+mxr]+mxlst+wxr]
>
or since fSwfét =10 ,
cﬁr} 52+ = 6+ > > > -
L2l x +ux (0x 1) (2-11) -
dt 6t2 St

The vector equation (2-3) now becomes, with the planet~fixed system used as the

14
H
'

reference frame,

624’ - - & > e
m——§-=F—2mmx-6£-mwx(mxr). (2-12)
5t &

For convenience, we change the notation for the time derivative and write it as

3

ndl
dt

=F-2uxV-mox (x7T) (2-13)
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with ? being the velocity with respect to the planet, and the time deriva-
tive taken with respect to planet«fi%ed aées.

In this planetocentric system, the position vector ¥ is defined by its
magnitude r , Its longitude 6 (measurad from the X-axis, in the equatorial
plane, positively eastward), and its latitude ¢ (measured from the equator-
ial plane, aloné a~mer;dian, and ?ositively“northward).

It is convenient to evaluate different vectors in Eq. (2-13) by their com-
ponents in a rotating coordinate system Oxyz such that the :::-axis is along
the position vector, the y-axis in the equatorial plane positive toward the
direction of motion and orthogonal to the x-axis, and the.z—axis completing a
right handed system (Fig. 2-3).

Let vy be the angle between the local horizontal plane (that is, the
plane passing through the vehicle and orthogonal to the vector 4 )}, and the
velocity ¥ . The angle v dis termed the flight path angle and is positive
when % is above the horizontal plane. Let 1 be the angle between the local
parallel of latitude and the projection of ¥ on the horizomtal plane. The
angle V¥ is termed the heading and is measured positively in the right~handed
direction about the x—a;scis. Let ':9: s ';-j> and ?c. be the unit vectors along
the axes of the rotating system Oxyz . We have

[
r

=ri (2-14)
and 1
§.= (V sin v) I+ (V cos vy cos ) 3 + (V cos v siﬂ ) k (2-15)

On the other hand, the angular velocity W can be represented by

B=(usin ) T+ (weos ) k (2~16)

Hence
> s : . T
wxV=- (wcos ycos ¢ cos $) 1 + wV(sin v cos ¢ ~ cos v sin ¢ sin ¥) j

+ wV cos vy sin ¢ cos ¥ £ (2-17)



AZ

Fig. 2-3. Coordinate Systems



and

@ % (‘o%; x ?:‘) = - mzr coszdz gy m2r sin ¢ cos ¢ E (2-18)

In the force ¥ , the gravity foree is simply

- >
R

mg = - mgr) (2-19)

The aerodynamic force K can be decomposed into a drag force 3' opposite |,
to the velocity vector ¥ and a 1lift force f orthogonal teo it. In symmetric
flight the thrust vector T is always in the lift-drag plane. Let € be the
angle between the veloeity vector if)- and the thrust T, Tl;en, we can decom—
pose the trhrust into a component T cos € along the velocity and a component

T sin € along the 1lift forece. It is convenient for the derivation of the equa-

tions to group the components of aerodynamic and propulsive force and define

Fp

Ty

Tcos e —-D
{2-20)
T sine+ 1L

Il

where FT is the component of the aerodynamic and propulsive forces along the

velocity vector and ¥, is their component orthogonal to it in the lift-~drag

N
plane. In vector form, since %)T is along v ,» we can refer to Eq. (2-15) to
write ‘
> -
¥ = (]5'T sin ¥v) i+ (FT cos y cos P) j + (FT cos v sin ¥) 4 (2-21)

In planar flight, the vector uI?N is in the @ . % plane), that is the ver-

tical plane, and there is nc lateral force. By control actéi_on, ,1f we rotate

> >
the vector L , and hence also the vector , about the velocity vector V ,

o

we create a lateral component of the force that has the effect of changing

- >
the orbital plane. To resolve the force FN or its collinear force L into
components along the rotating axes, we refer to Fig. 2-4, The vertical plane

congidered is the (:::) s ?I) plane. Assume the vector T is rotated out of this

plane through an angle ¢ . The angle ¢ which is the angle between the vector
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T and the G? , ?}) plane will be referred to as--the -roll, or the bank, angle.
The force §N

—_—
is decomposed into a component- B os ¢ din the vertical plane
and orthogomnal to V and a component T, sin ¢ orthogonal to the vertical
plane. Tet x” , y° , and 2° be the axes from the position M of the
vehicle, parallel to the rotating axes x , y , and z . Let X s Y1 s

—_—
and zq be the axes from the point M , along the directiom of Fgeos o ,
+
¥V and FN sin ¢ vrespectively. The system Mxlylzl is deduced from the system

Mx“y“z” by a rotation ¢ in the horizontal plane, followed by a rotation ¥

in the vertical plane. Hence, we have the transformation matrix eguation

x” 1 0 0 cos v sin vy 0O %y
y’ = {0 cos P -sinVP||-siny cosy O Y1 - (2-22)
‘z’J 0 siand cos ¥ o] 0 1 Z4
or i
x” cos Y sin ¥y 0 xlq
v°] = l-'sin ycos ¥ cos vy cos ¥ - sin ¢ 1 (2-23)
B z’J - sin y sin $ . cos ¥ sin P cos Y| zy
Since the components of -fN in the Mxlylzl system are x = FN cos 0, Yy = o ,

\.9.
zy = FN sin 0 , we deduce the components of FN along the system Mx“y“z” ,

or what is the same, along the rotating system Oxyz

¥ ‘ 3
Fy = (FN cos 0 cos Y) i- (]5‘N cos ¢ sin v cos ¢ + Fy'sin o sin- ) j

- (FN cos 0 sin v sin ¥ - FN sin o cos ¥) fc- (2-24)
In summary, we have resolved all the vector terms in Eq. (2-13) into components
along the rotating axes Oxyz .
In order to take the time derivative of the vectors ; and i)‘* with respect
to the planet-fixed system OXYZ wusing their components along the rotating

i >
system Oxyz , we need to evaluate the angular velocity vector { of the
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Fig, 2<4, Aergdynamic Forces and Thrust Components
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rotating axes. The system Oxyz is obtained from the system O0XYZ by a rota-

tion @ about the positive Z-axis, followed by a rotation ¢ about the nega-
tive y-axis. Hence the angular velocity % of the rotating system Oxyz is
= (sin 0 I T - GO T+ (cos 9 D E (2-25)

R § dt

. ) ) > -
We use the Eq. (2-7) with  dinstead of © to deduce the time derivative of

k1 ’ 3- , and *
dx 1= 1C0s 9y
& = e, = o, =
___‘1_ = EA—— ALLA 4 . Vs -
P R x 3 (cos ¢ dt) i+ (sin ¢ dt) k {2-26)
-
dk _ 27 _ L oAy T - déy T
Frole Qx k= (dt) i (sin ¢ dt) i

if we take the time derivative of T , as given by Eq. (2-14), using the first

of the Egs. (2-26) for the derivative of k1 , we have
dr - ds. dé, 7 -
_ Y ( ) I+ (r cos ¢ dt) J + (z t) k (2-27)
Identifying this equation with Eq. (2-15) yields three scalar equations
dr _ .
ar V sin v
d8 _ ¥V cos y cos ¥ _
dt r cos 9 2 28?
dé _ V cos y sin ¢ ki )
dt r .

These equations are the kinematic equatious.

On the other hand, if we take the derivative of the velocity vector

as given by Eq.

>
vectors 1 ,

_d¢/dt

(2-15), using the

>

i » and &

., we have

-

Eqs. (2-26) for the derivatives of the unit

, and subseguently the Eqs. (2-28) for d8/dt and

v o,
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= 2
dav _ dv dy V 2 rd
Frie = [sin YEE-!-Vco YE—-——r cos vl 1

+[cosycosw-g—‘;—vsinyc:osxbg——Vcosysuxlb-}E

2
+ %—— cos y cos ¥(sin v -~ cos v sin ¥ tan ¢)] __{ (2-29)

+{cosf'sin¢g-g-—Vsinysmwd -l-Vcosycos IJJ—‘E

2
-+%— cos v(sin v sin ¥ + cos v cos B tan ¢)] ¥

By substituting into the basic vector equation (2-13), using the Egs. (2-17) -

(2-19), (2-21) and (2-24), we obtain three scalar equations

. 2
siny%%+Vcosy%E—¥—-coszy= FTsiny+i-FNcosocosy-g

B~

2 2
+ 2w Vcos vy cos ¢ cog 0+ wzr cos &

oo dy av i
cos ¥ T; V sin ¥ it V cos y tan ¥ It (2-30)
vz ) 1 1 . v

+ o cos yY{sin y - cos Y sin ¢ tan ¢) =EFT cos Y -E(FN cos © s:my-l- Fy sin o tan

(s:m Y cos ¢ - cos ¥ sin ¢ sin ¢)

- cos
cos ¥ %—E -V sin vy g: + ————mlvtggsw g;’:b -+ —2 cos y(sin 'Y.+ €os Y ‘EZIS!. $ tan d))
=§EFT cos Y _%(FN cos O sin Y-E-Eg]f;—c)
- 20 ¥ co:anx ‘?in ¢ _ r sitsliné :;05 $

Solving for the derivatives dV/dt , dy/dt , and dy/dt; , we get the three

scaler equations: ‘-

%:lf -gsin'\{+m2r cos ¢(sin ¥ cos ¢ - cos Y sin ¢ sin ¢)
t m T

2
v%:%f‘ncosd-gcos~(+¥~—cosy+2chos¢cos¢

[3%)

(2-31)

+
e
H
o]
[w]
0
=
~
0
o
0
=2
Iy
o]
n
=
Y
a
[=]
2
2
=}
&
o
[=]
=
St
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av 1 EN sin o 2 - -
Viar = m cos y ¢ CoSYcos ¥ tan ¢ + 2w V(tan ¥ cos ¢ sin ¥ - sin ¢)
B o sin ¢ cos ¢ cos V¥ (2-31, continued)
cos Y

These three equations are the force egquations. The presence of the ® term is
due to the rotation of the planet. If we assume that the atmosphere is at rest
with respect to the planet, then it has the same rotation as the planet. 1In
general, w is small and the term wzr can be neglected. On the other hand,
the term 2w V , called the Coriolis acceleration, has an important effect in

a high-speed, long-range flight. For an accurate analysis, especially in the
problem of computing the trajectory of a ballistic missile, the term should be
retained. In this b;ok,, we shall mainly be concerned. with the variations .of

the speed and altitude of the vehicle in the main portion of the trajectory where
high deceleration develops. For this purpose, we can also ignore the effect

of the Coriolis, that iz, we shall assume that the planet, and hence the atmo-
sphere, is nonrotating, w=0 . :

Then, the equations become

dv _ 1 .
E—EFT—g51nY
v 4y . l-F cos 0 - g cos y + EE-cos Y (2-32)
dt m N r
F_ sin o 2
a _ 1 N Y
v dt ~ m cos ¥ L COS Y cos » tan ¢

where the force components Fo and Fy are defined in theiEqs%_(2-20) for the
case of powered flight. In this case, the mass of the vehicle is varying and

we add the equation for the mass flow rate

dm _ T
[

Freiali (2~-33)

where T 1is the thrust and ¢ a parameter characterizing the propellant used

in the propulsion system on board the vehicle. In the case of nonthrusting
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flight, which is usually the case for high speed entry into the planetary at-

mosphere, we have T =0 |, FT = =D and FN =1L . Hence, the three force

equations for entry trajectories are

@__.D_ sin
dt e Y
2
Vj—l—r—L—?e’—g-—gcosy-!--g—casY ’ (2-34)

2

Vﬂ=£&£-z—-cosycoswtan¢

dt m Cos Y
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CHAPTER 3

PERFORMANCE IN EXTRA-ATMOSPEERIC FLIGHT

3-1. INTRODUCTION

Beginning here, we shall analyze the performance of long-range hyper-
velocity vehiyles. The flight is assumed to take place in the plane contain-
ing the great circle arc, between the take-off point and the landing point.
The flight is thought of in two phases as illustrated in Fig. 3—1._

a/ The powered phase, in which sufficient kinetic energy provided by
the propulsion system is imparted to the vehicle to bring it, under a proper
guidance, to a prescribed position and velocity in space. The trajectory fol-
lowed is the arc AB in Fig. 1. The point B 1is referred to as the burn-out
position.

b/ The unpowered phase, in which the vehicle travels to its destination
under the influence of the gravity and aerodynamic forces. The trajectory

followed is the arc 3BC .

N ATMOSPHERE

Fig. 3-1. Trajectory of Long Range Hypervelocity Vehicle.



The powered phase is generally short, and the corresponding longitudi-
nal range during lesunch, X is small compared to the radius of the Earth.
Hence, the trajectory can be analyzed using the flat Earth assumption. This
is done in the following Chapter. For a short range flight, the unpowered
phase is performed entirely in the dense layer of the atmosphere. For loag
range flight, if the total energy imparted to the vehicle at the burn-out posi-
tion B is sufficiently high, with a proper orientation of the burn-out veloc-
ity, the trajectory followed will have a portion emtirely outside the dense
layer of the atmosphere. This portion of the trajectory is represented by
. the arc BE in Fig. 3~1. The corresponding contribution to the range,

(xp - %3) , may be large. This is one of the most interesting features in
hypersonic flight. For long-range operation, hypervelocity vehicles may re-

duce the cost in fuel consumption since the range (xE - x,) can be made in-

B
finite with finite energy iﬁput. In this respect, Sdnger and Bredt were among
the first to recognize the favorable coanection between speed and range
(Ref. 3-1). The idea leads to the concept of present-day shuttle vehicles
where, after the powered phase, the subsequent trajectory is entirely flown
outside the atmosphere for several days and the required mission is accom-
plished without additional energy input. When it comes time to return to
the Earth a rocket may be fired to deflect the trajectory such that it inter-
sects the atmosphere of the Earth at a certain point E called the entry
position. The subsequent trajectory is called the reentry trajectory. This
portion of the trajectory is illustrated by the are EC in Fig. 3-1.

"In this Chapter, we shall be concerned with the extra—-atmospheric por-
tion of the flight trajectory, namely the arc BE . We shall assume that

space is completely free of atmosphere. Hence, from classical orbital mechan-

ics, the trajectory is a Keplerian conic. The reentry phase will be analyzed



in subsequent chapters.

3-2. THE TRAJECT&RY EQUATION

In the plane of motion, the position of the wehicle, considered as a
mass point represented by the point M. , is defined in polar coordinates by
“itts radial distance -r from-the—center of -the Earth 0 , and the angle -6-

between the wectors 0B and oM (Fig. 3-2).

Fig. 3-2. Geometry of the Trajectory

With the aerodymamic force neglected, the vehicle is subject only to the
gravitational attraction which, for a spherical earth, is directed toward

the center 0 with a force per unit mass

F
I
m

(3-1)

‘ HNI'!:.'

where m is the mass of the vehicle, and u a positive constant



po= Gme (3-2)

m, is the mass of the Earth and G a universal constant. This yields a

value of u for Earth:
km3

2
sec

B = 398603.2

Since the force is central, its component F, -along the direction perpendic—

5

- > + - - -
ular to the position vector r is zero. Hence, we can write the equations

of the motion in polar coordinates

(3-3)

r -6 = -

o " &
%)

o + 216 = (3-4)
The dot represents derivatives taken with respect to time. By integrating

Eq. (3-4) directly, we obtain
r'8 =h (3-5)

where h is a constant. Since r6 is the velocity component orthogonal to
the position vector, Eq. (3~5) shows that the constant h is the angular
momentum per unit mass.

The equation for r , Eq. (3-3), can be integrated by the change of

variable
1
T =g (3-6)
Using 6 as the new independent variable to replace the time gives
c_drde _sd 1y 6 ds -
S O e T -7

Since, from Eqs. (3-5) and (3-6)

§ = hs* . (3-8)
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we can write Eg. (3-7) as
f = - h — (3-9)

Therefore,

d’s _
— (3-10)

nan
]
;
o
41}

d
r=-nh '"—2-

Making these substitutions into Eq. (3-3) we obtain the linear equation in

8

2
5

[T}

+ 5 = EE' (3-11)
N ,

[

de

The general solution of this equation is

s = H§-+ Ccos (B8 -8) {3-12)
b o

where € and 90 are two constants of integration. Returning to the vari-

able r , we write

— P -
T=3T¥ecos (@ - 60) (3-13)
where
.2
P = h fu (3—14)
and
_ 2,
e = ch“/u (3-15)

Equation (3ﬁ13) represents a family of conic sections. The center of attrac-
tion 0 dis a common focus for the family. The dimensionless parameter e

is called the eccentricity of the conic, and the parameter p , which has

the dimension oé‘length, is the semilatus rectum, or the conic parameter. The

polar equation involves three éonstants, P , e and 90 . These constants

are spec1f1ed by the values of the radlal_distance T ,» the speed VB and

B
the flight path angle Yg at the burn—out position B . The flight path



angle vy along the trajectory is measured positive upward from the local

-
horizontal to the velocity vector V .

3-3. CHARACTERISTIC VALUES OF A TRAJECTORY

Once the initial values r s, V_ and Yy are specified, the trajec—

B B

tory followed by the vehicle is -well-determined. With each trajectory, there
are associated a number of characteristic values which are constants of the
motion. ITn this section, we shall define these values and interpret their

physical meanings.

' First, using Eq. (3-5), we rewrite Eq. (3-3) as

S R N (3-16)

Muitiplying the equation by T ,» we have

2

. hr _ur

TR 2

r T

or equivalently
L2

1d 22 by _d
za +r2) e

By integrating and replacing h2 by (rzé)z ,» we obtain

L2+ @byl -L-k (3-17)

M=

where E is a constant of integration. If V_ dis the radial component and

r
Ve the transverse component of the velocity, V& =1 and Ve = 16 » and

vV=v?ev?=ite @d)? (3-18)
Hence Eq. (3—175-can be written as
Ly? _E_E (3-19)
2 r

At each point along its trajectory, the véhicle has, per unit mass, a kinetic

energy equal to %-Vz and a potential energy from which is derived the
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gravitational force. Since the gravitational force per unit mass has the

magnitude EE' s the potential energy at a distance r dis - %- , 1if we
T .

select the level of the potential energy such that it has the value zero at
infinity. Hence, relation (3-19) states that the total energy per umit mass,
along the trajectory, is constant. The equation is called the energy in-
tegral or the vis-viva integral.

Next, by a rotation of the direction of reference, we can make 6 =0

0

‘and e > 0 in the polar equation (3-}3) for the trajectory. Hence we con—

sider

T (3-20)

T+ e cos 6
In this form, the angle 0 is no longer measured from the position wvector

—_ £
Iy s but from a new reference direction which we shall determine later.

*

Equation (3-20) is the general equation of a conic section. The radial dis-
tance r remains finite if O e <1 . This condition defines a family
of closed curves, ellipses. If the trajectory does not intersect the bound-
ary of the Earth's atmosphere, the vehicle returns to its initial condition
for each variation of 2m of the angle 8 . Hence we shall refer to the
trajectory as an orbit. The distance r remains the same when we change
6 dinto - 6 . The elliptic orbit is symmetric with respect to the polar
axis (Fig. 3-3). The minimmm value of r is called the pericenter distance

rP . It is obtained by setting 6 = 0 din Eq. (3-20). We have

r = —2— (3-21)

We see now that the reference direction is the direction toward the point P

of closest distance called the pericenter. The maximum value of r , T,

is called the apocenter distance. It is, obtadined by setting 6 = w in

Equation (3-20). We have



Fig. 3-3. Elliptic Orbit

r = —PB— _ (3-22)

The point of farthest dis;ance, the point A , is called the apocenter.

For the Earth, the point P and the point A are alse called the peripee
and the apogee, respectively. They are the apses of the elliptic orbit, and
the line joining P and A is called the line of apses. The distance 2a

between the apses is defined as the major axis of the ellipse. Hence

2
2a=71 +r =ob—4 L = D (3~-23)
P a 1+e 1-8 a - ez)

This gives the relatica for the semi-latus rectum
2
p=a(l-e") ] (3-24)

Therefore, in terms of a and e , the expression for rP and r, can

be written as
rp =a(l-e) , r, = a(l + &) (3-25)

Now, by taking the derivative of Eq. (3-20), we have
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pe sin 8 de
2 dt

;-
(1 4+ e cos B)

Or using Egs. (3—:5) and (3-20) and noticing that Vr =r , we have

V. = b e sin 0 (3-26)
r p
On the other hand, in evaluating Ve = 10 ", we have
h
Vy = > (1 + e cos 8) (3-27)

The Equations (3-26) and (3-27) give the expressions for the radial and
transverse components of the velocity along the orbit as functions of the

polar angle. The magnitude of V is given by Eq. (3-18) written as

V=284 1+ e+ 2 cos 6 (3-28)

el =y

Since h2 = up by Eq. (3-14), using the relation (3-24) we can rewrite

this expression as

V:ﬁL 1/1+e2+2e cos O (3-29)
2
a(l - e7)

This equation gives the magnitude of the velocity along the orbit as a func-
tion of 6 . It passes through a maximum at the pericenter, 6 =0 , and

a minimum at the apocenter, 6 =7 . We have

_ /u(d +e) _ /ud - e) _
Vo AR Ly, - s g (-30)

The flight path angle at each point along the orbit is given by

vr VB v‘r
siny=F s COS Y =g o, tany=—{7-; (3-31)

Hence, using the Eqs. (3-26) - (3-28), we have
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. _ e gin 6 ‘'l + e cos O
sin y = - s COS Y = = G ’
Jﬁ + e2 + 2e cos & Jé + ez + 2e cos 6
(3-32)
. e sin B
tan vy = 1+ e cos 8

1

Ifwe use r=%_  , and V= Vb to evaluate the constant energy £ in

P
the vis-viva integral, (3-19), we have

e=-L (3-33)

-This shows that the total energy of the orbit is a function solely of the

major axis. With this value for & , we rewrite the energy integral
2 42 L —34)
Vo= u(r a) (3-34)

This very important relation expresses the speed along the elliptical orbit
in terms of the radial distance r .

We have defined the elliptic orbit as am orbit with an eccentricity
such that 0 g e <1 . The two limiting cases are the cases where e =0 |,
and e=>1 .,

When e = 0 , the Eq. (3-20) shows that the radial distance is con-
stant. The orbit is circular. From the Eqs. (3-26) and (3-27) with e =0 ,
we gee that the radial component of the veldﬁity is zero, while the mnormal
component of the velocity is constant. This component, which is tangential
to the circular orbit, is called the circular speed. The circular speed

can also be obtained from Eq. (3-34) by putting a =r . Thus,

v, = /& ' (3-35)

The other. limiting case is obtained by making e + 1 . From Eg. (3-23),
we see that, holding the semilatus rectum p constant, when e > 1 , the
major axis of the ellipse tends to infinity. We say that in the limiting

case e =1 , the orbit is a parabola. The equation of the conic, Eq. (3-20),



3-11
with e=1 |, becomes

= P = p -
r 1+ cos © 2 I3 (3-36)
cos” 3 y,

The cleosest distance is obtained for 6 = 0
r =L (3-37)

The farthest ﬁistance, When @ =7 , is infinite. Since the trajectory
has an infinite branch, the vehicle along a parabolic flight path escaﬁes
to infinity, though it takes infinite time. For this reason, the speed

along a parabolic trajectory is called the escape speed. From Eq. (3-34)

we see in the limiting case, when a -+ » , the escape speed is

v - /2 (3-38)
escape T

It is obvious that, at any distance r , the conditioq for a circular orbit
is that Eq. (3-35) holds, together with the condition that the direction of
the velocity is perpendicular to the position vector. 1Im contrast, for a
parabolic orbit, condition (3-38) is necessary and sufficient. Now Eq. (3-5)

can be written
1.2 _h _
A= 2 T B = 5 (3-39)

The quantity A is called the areal velocity. It represents the rate at
which the position vector sweeps out area. We see that this rate is comn-.
stant for a given orbit. TFor an elliptic orbit, if we integraﬁe the equa-

tion over a full period T we obtain

%-T = ra2V1 - e2 = Area of ellipse (3-40)

But from the Egs. (3-14) and (3-24)
h = /ip = Ma(l - 2) (3-41)

Therefore the period is
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3

T = 2 §~ (3-42)

Just as is the energy E , the period, T , in elliptical motion is a

function solely of the major axis.

.3~4. TIME OF FLIGHT ALONG THE.ORBIT
Consider the Eq. (3-39) written as

dt = % 2 as (3-43)

Using the polar equation (3-20) for r , we have the time of flight frem
the pericenter to a position M defined by the polar angle 6
2

2
e=f [0 S 377 8®
0 (1+ e cos 6) h({l - e

3
t = é S(8) (3-44)

where the function S§(6) dis given by

evl - e2 sin &

1+ e cos ©

or

1l-e
1+ e

s(6) = - + 2 arc tan ( tan %) (3-45)

Let M. and M2 be two points along the orbit with polar angle 61 and

1
62 . The time of flight for the wehicle to travel the arc M1M2 is
t, -ty = E—-[S(ez) - S(Bl)] (3~4b)

Using Egq. (3-42) we can wrilte

t2—-t1

-1 - -

The time of flight along an elliptic orbit can also be obtained by simple
geometric considerations. First we shall give some properties related to

an ellipse.
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An ellipse can be ohtained from a circle of center w and radius a ,
called the principal eircle, by an affine reduction with ratie b/a (Fig. 3-4).
From each point M' on the circle, the corresponding point M on the el-

lipse is obtained by reducing the ordinate of M' by the factor b/a .

y, B’

MI

Fig. 3-4. True Anomaly and Eccentric Anomaly

Hence when M' dig at the point B' , the corresponding point on the ellipse
is B such that wB=b . The minor axis of the ellipse is 2b . Im
celestial mechanics, the polar angle e_ defining the point M , measured
from the pgricenter, is called the true anomaly. On the other hand, the
angle E measuréd at the center w of the-principal_cirecle from the
pericenter, defining the point M' on the principal circle, is called the
eccentric anomaly. Using Cartesian coordinates as shown in Fig. 3-4, with

the eccentric anomaly as the parameter, we can write the coordinates of the
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point M' moving along the principal cirecle

#' = g cos E
(3-48)

y' = a sin E

Using the affiniiy described above, the Cartesian coordinates of the point

on the ellipse are

a cos E

™
1l

(3-49)
b sin E

i

y

From this, we can verify the familiar Cartesian equation of the ellipse

2

2
X . ¥ _ _ -
2+2—1 (3-50)
a b

The point (' , symmetric to the point 0O with respect to the center
w , is called the second focus, or the vacant focus of the ellipse. A main
property of the ellipse is that the sum of the distances from any point M
on the ellipse to the foci 0 and O' remains constant and equal to the
major axis, that is

MO + MO' = 2a (3-51)

Another propevty is that the bisector MN of the angle OMO' dis the normal
at the point M to the ellipse. Hence, this bisector is orxrthogonal to-the
tangent at M .

The distance 00' = 2¢ is called the focal distance. From Fig. 3-4

we have
c=wld=uwP-0P=2a-2a(l-e)
Therefore
c = ae" (3-52)

On the other hand,-since 0B=a , from the triangle OBw
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b2 = a? - c2
or

b = ari - e (3-53)

The ellipse can be considered as the projection of the principal circle, the
angle. o between the planes containing the circle and the ellipse, respec-
tively, being such that cos o =-bfa . We have shown that the time of

£flight from the pericenter P to the point M is proportiomal to the area

POM swept by the radius vector OM . By using the ﬁotation Area POM = (POM) ,

we write
t =K +« (POM)

where K is a coefficient of proportionality. But

(POM) = 3a?-(1=om')
b T T
= Dlpa') - (outt")]
_ by 2, 2 .
= 2a[3 E - a"e sin E}
Hence
t = E%h-[E - e sin E] {3-54)

The coefficient K is obtained by taking E = 27 , which corresponds to

the time t equal to a full period of revolution T . Hence

T = Kabw . (3-55)

3
w. _
AT (3-56)

Hence, the time of flight from the pericesnter in terms of the eccentric.

-

Compared with Eq. (3-42)

anomaly E dis given by

M=F%~e sinE (3-57)
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where M is a non-dimensional time

—
M= My (3-58)
/3

Equation (3-57) is the well-known Kepler's equation. The variable M , ex-
pressed in radians, is called the mean anomaly.
Final;y, it is easy to derive relations between the true ancmaly 6

and the eccentric amomaly E . From Fig. 3-4, we have

Q = 0w + uQ
or
r cos 8 = - ae + a cos E (3-59)

Using Eq. (3-20) for r , with p = a(l - e2) , we have

{1 - e2) cos 8
14+ e cos 8

= ¢cos E-e

Hence,

_cos E-e _ e+ cos 6 _
cos 8 =37 cos B > S E=T s e (3-60)

From this,

vl - e2 gin E Yl - e2 sin 8

sin 8 = , 8in E = (3-61)

1-ecos E 1+ e cos @
Also,
28 _1-cos 8 (1+e)(l-cosE) (1+e) 2E
A 5 T T ¥ cos 8 (1~ e)(L T cos B) ~ (L ~ ey 2% 3
That is,
o _ flie. E _
tan 5= /i e tan 5 {3-62)

Quite often, we use the expression for the radial distance r in terms of

the eccentric anomaly E . Using Eq. (3-60) in Egq. (3-59), we have
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r=a(l - e cos E) (3-63)

3-5. THE ELEMENTS OF THE ORBIT IN TERMS OF THE INITIAL CONDITION

Let us now follow the trajectory, starting from the burnout position
B . The quantities Ty s VB » and Yy are known, together with the
-direction from the center of the Earth O to the position B . We propose

in this section to calculate the quantities related to the orbit followed by

the vehicle in terms of the information obtained at burnout (Fig. 3-5).

Fig, 3-5. The Orbit from Burnout Conditioas

It is convenient to define the non—dimenéional burpout speed u; as the

ratio of the speed Vﬁ , to the circular speed at distance Ty

V.
w0, = ——o - (3~64)

B
Vﬂ/ré

We shall assume that the orbit is elliptiec, that is up < V2 . TFirst, by
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applying the energy intergral, Eq. (3-34), at the point B , we have

2 oo b
VB = u(rB a)
From this equation, the major—axis is
a_ __1 . (3-65)
T -2
B 2 - up

Since the angular momentum is constant along an orbit, it can be evaluated

at the burnout position
h= erB cos Yy (3-66)

Using Eq. (3-41), with the major-axis obtained from Eq. (3-65), we have for

the eccentricity

e = J/i - u%(z - uﬁ) c032 Yg (3-67)

or

e = J/;inzyB + (1 -ug)zcoszyB (3-68)

From Eqs. (3-65) and (3-68) for a and e , we have for the apocenter dis-

tance and the pericenter distance from Eq. (3-25)

r
1 . 2 2.2 2
;§-= ——-——E{l + f/;ln Yy + (1 - uB) cos YB] (3-69)
B 2-aqu
B
and
* 1 2 222 - '
~P—=————[1—/sin-r + @ - ud)cos Y, ] (3-70)
T 2 B B B
B 2 - up

The condition for ‘the orbit to intersect the Earcth's atmosphere, assumed to
be spherical, with a finite radius R , is that rP £ R . Hence, in terms

of the initial conditions, we have the condition for intersection

R+t _n- / sinZy. + (1 - u2)’cos?y.] (3-71)
r, 7 L 2 B B B
Ug
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The orientation of the orbit is given by the angle BB between the direc~
tion to the pericenter and the direction to the burnocut position B3 . This
angle is obtained by replacing in Eq. (3-20) r and & by Ty and by -

We have

=dra g 2y o
cos B, = e[rB(l e”) - 1}

-or, using Egs. (3-65) and (3-67)

2c052Y‘ -1
cos B, = 8" T : (3-72)
B //i C 202 - D) cod?
ug ug cos.yB
Therefore,
uzsin Y,LCO0S ¥
sin by = LN a— (3-73)
//i 2 2 2 2
1 (2 - up) cosTyy
and
uzsin YL CO8 Y
ten. 6, = 2B B (3-74)
B 2 2
URCOs Yy = 1

3-6. MINIMUM-ENERGY ORBIT

Let us consider the case where the vehicle, after ascending to the high-
est altitude, at the apocenter A , returns and intersects the Earth's at-
mosphere at the entry point E at a distance R from the center of attrac-
tion 0 (Fig. 3-6). This is the case where the inequality (3-71) for inter-
section is satisfied. The angle ¢ between the positions B and E ,
measured at the‘center of attractiom 0 , is called the range angle. From

Fig. 3-6, it is Seen that

where BE is the polar angle defining the entry position E . The angle

BB is given by Eq. (3-72). The angle BE is obtained by replacing in the
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APOGEE

E
Fig. 3-6. The Range Angle
Eq.-(3-20) r and & by R and BE . We have -
L2 Loy - -7
cos BE = e[R(l e’) 1] (3-76)
Using Eq. (3-65) for the semi-major axis we have
r
a B a A
a._=22 . (3-77)
R R s oo - u2
where
T
- B -
A=z (3-78)

is the ratio of the radial distances to the point B and E , respectively.

Hence,

Au%eoszyB -1

2 2 2
V/i - uB(Z - uB) cos YB

cos GE = (3-79)
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_ The range angle is then
_ 1,2 2 _ 1,2 2 ~
$ = arc cos e(luBcos Yg 1) arc cos e(uBcos Yg 1) {3-80)

where e dis given by Eq. (3-67). We notice that when the point B dis at
the top of the atmosphere, rg =R , and A =1 . Since the point E is

beyond the apocenter, GE =21 - BB , and Eq. (3-80) becomes

1, 2 2
$ = 2[% - arc cos E{uBcos Yg = 1)1 (3-81)

The range can be evaluated when the trajectory intersects the Earth's at-
mosphere. In the limiting case, where we have an equality in condition
(3-71), the trajectory is tangent at its pericenter to the circle with center
0 and radius R representing the atmosphere in the plane of the motiomn.

The flight path angle at the point of tangency, which is also the limiting
position of the entry point E , is zero. The trajectory is called the graz-
ing trajectory. By simple geometric considerations, it is seen that the range

Hence, from

angle for the grazing trajectory is given by ¢G =27 - BB .
Eq. (3-74),
uzsin Y,C08 Y
tan ¢, = B B B (3~82)
G 1 - 2co 2
Ugtos Yg
This equation can be written as
sin ¢, - 2sin(¢ ; Y,) cos vy, =0 (3-83)
¢~ "B ¢ B B

Equation (3-80) for the range gives ¢ as a function of two parameters

u, and Yg - .For a given initial velocity u , there exists a value of

B B
the initial flight path angle Yg such that the range angle is a maximum.
Conversely, for a prescribed ramge angle ¢ , Eq. (3-80) gives the initial

velocity up as function of the initial Fflight path angle Yg There exists

an angle Yg giving the minimum velocity up to achieve the prescribed range
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angle. Since, by Eq. (3-65) the minimum of up c;rresponds to the minimm of

the semimajor axis a , which in turn, by Eq. (3-33), corresponds to the mini-

mum of the total energy € , such an orbit is called the minimuym~energy orbit.
To calculate the minimum-energy orbit, it is comvenient to rewrite

" Eg.. (3-80)in the implicit form
f(¢ s A, uB » YB) =0 (3"84)
For this purpose, we write Eq. (3-75)

cos BE = cos(¢ + GB)
or

cos B_ = cos ¢ cos GB ~ gin ¢ sin ©

E B

From the Egs. (3-72), (3-73) and (3-79)

1- Au%coszYB = cos $(1 - ugcoszyB) + sin ¢ ugsin YRS Yg

or
. ' _ cos(d + v,)
£(h,ug,7y) = 52058 B =0 (3-85)

cos Y
uBcos YB B

Now, congidér the case where the points B and E are prescribed. The
Eq. (3-85) gives the relation between thg initial speed uy and the initial

flight path angle Yg to achieve the prescribed range ¢ . We write the equa-

tion
(1 - cos ¢) 2. . 1l - cos ¢ 3o
> tany, - sin ¢ tan Y5 + > +cos p - A=0 (3-86)
Us U

For each Initial speed up - this equation, considered as a quadratic equation

in tan vy ives two values . Hence, there exist two trajectories con—
B H = 2 J

B
necting the points B and E . One is called the high trajectory, and the
other the low trajectory. The two trajectories coincide when the equation has

a double root. Then we have
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Sin2¢_4(l—;os ¢ (L'~ §°S¢+cos $-2)=0 (3-87)
e U

We notice that if we consider Eq. (3-B5) as am implicit equation giving u,

as function of Yg o for a prescribed range angle ¢ , then by taking its

derivative with respect to Y5
- ax 49 LA
du_ dy oy,
U B B
dug
The minimum of up with respect to vy, corresponds to — =0 , that is,
B d'YB
3
—a-f(— = 0 , which is the same condition as for Eq. (3-86) to have a double
B

root. Hence Eq. (3-87), when solved, provides the minimum speed up for a
prescribed range angle ¢ , with an initial distance ratio A . Solving

for u, , we have by taking the positive root

u% = —--12—[&:05 $ - A+ .AZ - 2X cos ¢ + 1] {3-88)
cos % .

* The corresponding flight path angle Yg is given by the double root of

Eq. (3-86). We have

2
u

B (3-89)

2 tan%

tan YB =

In the simple case where the point B 1is at the top of the atmosphere, we

have A=1 . The Eqs. (3-88) and (3-89) are reduced to

9 2 sin %‘
uB = ——— (3-90)
14+ sin $
2
and cos Iy
2 ) ¢
tan Yg = = tan(z - Z) (3-91)
1+ sin%

That is,
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L

_r_¢
Ys =7~ % , (3-92)

We see that, for the case of the minimum—energy orbit, when the burnout and

the entry positions are at the same distance from the center of attraction,

the initial speed and the initial flight path angle are given by simple expres—
sions in terms of the range angle ¢ . In this case, the other elements of
the flight path can also be expressed in terms of the range angle.

For the semi-major axis, using Eq. (3-65) with T = R , and Eq. (3-90)

we have

N

& -2+ sin %) (3-93)

For the eccentricity, we write Eq. (3-67)

2 2
(2 - u)-
e = 1- i——-—zh-‘ (3-94)
1+ tan Yy
Using Eqs. (3-90) and (3-91), we have, after simplificatiom
cos 2 2 sin 9
2 2 N 2
e ————— | 1 - = -*+—""— (3-95)
1+ sin g— 1+ sin %
We notice from Eq. (3-91) that
e = tan Yy (3-96)
The apocenter distance of the trajectory is
R cos %
r =all+e) =31 +sindH@+ )
a . 2 2 1+ gin &
gin
2
Hence
a 1 % $.
R 5(1 + sin 2'+ cos 2) (3-97)
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For the‘time of flight between the two points B and E , we usé Keple:'éx
equation, Eq. (3-57). Let El and E2 be the eccentric anomalies correspond-
ing to the péint B and E , respectively. Then the. time of £flight is given
by

Z . .
/Z/a3 (t2 = tl) = E2 - El‘-_e(31n E2 - gin El)

Obviously, when XA =1 j, the points B and ‘E are symmetric with respect to

the line of apses. Hence

E2 = 27 - E1
Therefore,
q - = - i -
33 (t2 tl) 2(x. El + e sin El) (3-98)
On the other hand, if 91 is the true anomaly of the point B
_— 1 ' -
0 =7 -3 (3-99)

Using equations (3-61) and Eq. (3-95) for e we have

/ 2 ., . &
l1-e" sin Bl 2 sin >

gin (v - E;) = sin E, = = - ¢
S 1 1 1+ e cos 8, 1 + sin-%
and
- cos-i
e sin B, =. 2
:L R

Upon substitﬁting into Eg.-(3-98) and usiﬁg ﬁq. (3-93) for a , we have

| emE —
/Z% (tz' = tl)- = (1 + sin %)slzarc sin — 2 + cos % ;/Z_sin -3- :
R B ' : 1+sind
2
{3-100)
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3-7. . EFFECTS OF VARTATIONS OF THE INITIAL CONDITION IN THE ELEMENTIS AT ENTRY
The trajectory foilowed by the vehicle during reentry depends strongly

on the coadition at the reentry position E . Hence, it is interesting to

study the resulting errors at the entry position E due to an error incurred

at the burnout position B .

Fig. 3-7. Error in the Range Angle

First, we consider the variation in the curvilinear range (Fig. 3-7)

) x = R (3-101)

The parameters specifying the burnout condition are r V., and Yp oo and

B * B
the curvilinear distance *p from the origin to the projection of the burnout
position B on the top of the atmosphere. It is apparent that, from the ro-

tational symmetry of the force field, any error in linear range AxB s incurred
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at the burnout position will be translated into an equal. error AxE of the

range
AR, = Bxy - (3-102)

We shall now evaluate the error Ax , or equivalently the error A¢

in the range as function of an error Arﬁ ;Q'AVB or AYB inéﬁrred at the

burnout -position. For this purpose we rewrite Eq. (3-85) with the velocity

VB appearing exp11c1tly

y = l-cos ¢ , cos (¢ + YB) _a

R.,2 2 " cosy
uAVBcos Y B

(3-103)-

1l
o

Then, the differential of £ is

_dE 3f of
Af = 5 A0 + m o v, AV, + g Ay = 0

Holding VB and Yy constant, the change in the range A¢ , due to a change

in the ratio of the radial distance AX is

2 - - ggg; (3-104)
Similarly, ) o
A$ | 2% (3-105)
oV~ 3E/3¢
and
Y Bf/ByB

by | T 3EPRe (3-106)

By evaluating the partial derivatives, we have the following formulae for com-

puting the error in -the range angle

2 2
§$.= 1l -~ cos ¢ + A?Bcos YB (3-107)

A 2
Alsin ¢ - u381n(¢ + YB) cos TB]
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A _ 2{(1 - cos &)
AV# V_[sin ¢ - 2 sin (§ + v.) cos v,]
B Up k! ¥p
(3-107, continued)
Ab T 2(1 - cos $) sin Yg +-u§ sin ¢ cos Yq
Ay . 2
Y3 305173[31n ¢ - Uy sin' (¢ + YB) cos YB]

Now,. consider the quantity in the square brackets in the denominators of

the Eqs. (3-107)

e 2 . o
A= sin ¢ up sin (¢ + YB) cos Yy (3-108)
A =0 when
. 2 .
sin ¢ — up sin (s + TB) cos Yy = 0 {3-109)

This is the same as Eq. (3-83) for grazing trajectory. Hence, in general, A
is not vanishing and keeps the same sign which we can easily verify as the
positive sign. Since 1 ~ cos ¢ >0 , from the first two equatiomns (3-107),
we see that the ratio A¢/AX and A¢/AB are positive. Any increase in the
initial altitudé, or in the initial speed, provides an increase in the range.
On the other hand, from the third equation (3-~107), the ratio A¢/AYB changes

its sign when

2L - cos ¢) sin Y = ug sin ¢ cos Yy

or »y
P4

LIB

2 tan-%

This equation is the same as Eq. (3-89) for the minimum-energy trajectory.

tan Yy = (3-110)

Along a minimum-energy trajectory, the variation of A¢ is always negative,

and is of the second order in Ay, . We have
3.7 R 2
b = byg + % (av)? + L (3-111)
Palt: g - .

By taking the derivative of the third of equations (3-107) with respect to YB
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and using the. relations for the minimum-energy trajectory, we have

2 2¢

3¢ _ _ 4 sin 2 (3-112)
2

BYB A cos YB

Now, using Eq. (3-89) for a minimum-energy trajectory we have

sin ¢ - ui sin (¢ + Yﬁ) cos Y

g
1l

B

. in vy, sin (& + v.,)
N PO St B
2 sin 2[c;os 5 N

cos
2

' o, 24 2 .24 .2 . . & [
2 tan 2[cos cos YB + sin sin YB 2 sin cos 5 sin YB cos YB]

2 2 2

oY

- b ol 4 B
A =2 fan 5 cos (YB + 2)'

Therefore, a perturbation AYB in the indtial flight path angle, along a min-

Imum~energy trajectory, corfesponds to an error in the range angle given by

sin ¢ 2

(3-113)

ap = - )

(ay
3 p) I
2 cos Y5C0S (YB + 2)

In this case, using Eq. (3-89) in the first two of equations (3-107), we have. for
the error in the range angle with respect to an error ‘in the initial altitude and
in the initial speed, along a minimum—energy trajectory

gin ¢ + A sin 2 Yp

A
it 5 3 (3-114)
2X cos (v, + )
B 2
and
e e
B VBcos (YB + ED
In the special case where the point B is at the top of the atmosphere,
Ty = R , and

2 coszﬂyB + %) = 1 +*cos (ZYB + 4)
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But from Eq. (3-92), 273 + ¢ = %-+-%- . Hence,
2 9 — ain 2 _
2 cos (TB -+ 2) = 1 - sin 5 (3-116)

The Equations (3-113) - (3-115) become

Ab = - & tan% (AYB)z (3-117)
%%—= - 9_'(1 + sin %D(l + 2 sin %a (3-118)
cos P
Ab_ _ 4 . & -
E%;-— A tan %-(l + sin 2) - (3-119)

Now, let us comsider the variations in the entry speed VE and the entry
flight path angle Yg o From the energy integral, Eq. (3-19), we have the
relation comnecting the elements at the burnout position B and the entry posi-

tion E

142 =L y% -
sV " =32 Ve (3-120)

le_'
i

B

On the other hand, by evaluating the angular momentum at these points, we have

rBVBCOS Yg = RVEcos Yg (3-121)

The differentials of Egs. (3-120) and (3-121) give

B, 199y
VBAVB + r2 ArB VEAVE (3-122)
B

and
(Vﬁcos YB) ArB_+ (chos YB) AVE - (rBV331n YB) AYB = (RcoszyE) AVE
(3-123)
- (RVE31n YE) AYE

For an error AVB in the burnout speed alone, the corresponding error in the

entry speed is given by Eq. (3-122) with 'ArB =0
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(3-124)

AVE
AVB

Hﬁlﬁ<

From Eq. (3-123) tﬁe error in the entry angle is obtained by putting ArB =0

and AYB =0
AVB Vi
(tan 'YE) AYE = -f—(—"é' - 1) (3-125)
B VE

For an error in the initial altitude, the error in the entry speed is

AV A
_E_ G.fEacﬁ_gl_.
v T r 2
E B BV
E
In terms of A and Uy s this is
AV
AX
e éH (3-126)
E [ug + 2(2 - D]
The corresponding error in the entry angle is -
2
+ 22 - 3
(tan v.) Ay, = - i§i~———————" CQAQ (3-127)
E E 2 A
up + 2x - 2

Finally, for an error in the imitial flight path angle Yg alone, there is

no error in the entry speed. The error in the entry angle is giwven by
(tan YE) Ay = (tan YB) AYB (3-128)

We notice from Egs. (3-125), (3-127) and (3-128) that the entry angle is

particularly seunsitive for a grazing trajectory, Yg = o .
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CHAPTER 4

THE POWERED PHASE

4-1. INTRObUCTiGN ;

In*thiéichaptér,=ye sﬁaii‘anaiyze:the trajectory of the wehicle from
the launching pad, point A, to tge burﬁout position, point B. During the
thrusting phase, the énergy provided by the propeliant is transformed into
potential emergy through the increase in the altitude ;f the vehicle, and kinet-
ic energy through its increase in speed. Also, a part of the energy provided
by the propulsion system is dissipated in the form of heat by action of the
aerodynamic drag. The powefed phase is the phase  during which it is possible
to have a guidance system to control the trajectory such that at the end of
the thrusting program, the vehicle reaches a prescribed.position B, specified

-~
T

v,
B

by the position vector , and a prescribed wvelocity B " We have seen
iﬁ,the preceding. chapter that the trajectory required by the mission may be
completely specified by these conditions at burnout.

The guidance is achieved by the following modes of control.

la/ Control of the thrusting force % . This control is performed by
thé directiéﬁ of the vector thrust. 1Its magni@ude can also be controlled by
Fhe variation of the mass flow rate.

b/ Besides the main engine, the vehicle can be equipped with several
small rockets providing lateral thrusting forces for its guidénce. We shall
., assume that the resultant thrusting force of all the engines is represented
by the wvector th?ust T

el Control of the aerodyngmic force K . This control is performed

by varying the angle of attack of the vehicle and possibly by varying its

" aevodynamic configuration. In £hree-dimensional flight, the'aerodynamic force
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is also a function of the bank angle.

4-2. THE EQUATIONé OF MOTION

To write the equations of motion, we shall assume that the trajectory
lies in the plane of the great circle centaining the launch point A and the
burnout position B. Hence, it"is*necessary‘that’all the forces involved be
contained in that plane. This leads to the assumption that the vehicle has
a plane of symnetry and that the wvelocity vector ¥ , the aerodynamic force
. X and the thrusting force T are all contained in that plane. The duration
of the powered phase is generally short and it is coanvenient for a first-order
approximation to assume that the Earth is an adequate inertial reference and
in this reference system the atmosphere is at rest.

The center of mass M of the vehicle is defined by its coordinates x
and 2z in a ground coordinate system Axz , where the axis Ax is the hori-
zontal at the launching point A taken as the origin of the coordinates, with
positive x in the direction of motion, and the axis Az is the vertical at
the point A, taken positively up (Fig.4-1)

At any point along its trajectory, the flight path angle of the vehicle
is defined as the angle between the local horizontal (the plane perpendicular
to the gravitational force EE )}, and the wvelocity vector ? + The angle ¢‘
between the local horizontal and the line Mx drawn parallel to the horizon-
tal Ax of the launch point is precisely the range angle as defined in the
preceding chapter.

At earh instant t , the vehicle is subject to three forces (Fig. 4-2).

a/ The gravitational force W= EE applied at the center of mass M .

b/ The aerodynamic force 9 applied at éhe aerodynamic center P .

hd + » >
The aerodynamic force can be decomposed into a drag force D in the opposite
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Fig. 4-1. Ground Inertial System

direction to the velocity v ,» and a 1ift force T orthogonal to it.

¢/ A propulsive force represented by the thrust vector T s applied
at 2 point Q . To simplify the force diagram we shall assume that the three
points M , P and Q are aligned and constitute a body axzis, fixed with
respect to the vehicle. Then the angle of attack ¢ can be conveniently
measured from this body axis to the velocity vector % . The thrust angle
€ 1ig defined as the angle between the body axis and the direction of the

thrust.

Using Newtdn's second law, we can write the equation of motion in vector

form

i
3
4=
By
..|..
=

(4-1)

=1
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Fig. 4-2., Forces Acting on the Vehicle

where m dis the mass of the vehicle. By projecting this equation into the

tangent and the normal to the trajectory of the vehicle we have

mg{—-=Tcos(s—G)-D-W35—nY (4-2)
and
_mvﬂ%ﬂ=Tsin(€~G)‘L+WCOSY (4-3)

These equations are the dynamical equations. They can be obtained directly
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from the general equations for flight over a spherical Earth derived in Chapter-

2.

The 1lift and the drag forces are assumed to have the form

1 2
L = 5 pSCLV

(4-4)

038C V2

D= D

Do

where p dis the atmospheric mass density, and S a reference area. The co—
efficients CL and CD are 1ift and drag coefficients. They are functions

of the angle of attack ¢ , the Mach number M and the Reynolds number Re

c

i
0
~~
)
w

=
-

o
p g

L L e
- (4-5)

[}
Il

CD(cx s M, Re)

The longitudinal range x , and the altitude =z are obtained from the kine-

matic relations

X = ft V cos(y - ¢) dt (4-6)
0

z=[%v sin(y - ¢) dt (4-7)
0

Finally we have the pitching moment equation, describing the motion of the
vehicle about the center of mass

2

d _ ‘ N .
B ;;E{Y +a-6¢)=1L RP cos ¢« + D QP sinag - 7T EQ sin =
. (4~8)
w e dlyto - )
M, - X P

where B is the moment of inertia of the wvehicle about an axis passing through

the cgenter of mass and perpendicular to the plane of symmetry, 2? the distance

betweén P and M and QQ the distance between Q and M . The term Mq

is the aerodynamic pitching moment, and the term Kd(y + o - &/dt represents

the moment. due. to the mass flow of the gas ejected from the propulsion system.
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The thrust can be written as

> > -+
T=-BV. * (o, -py A, 0, (4-9)
where B = ~ dm/dt is the overall mass flow,’ Vre the average relative veloc-—

ity, Pe the average pressure and Ae the area over thé exit of the engine.

It is assumed that the tangentiél stress over the exit area is negligible. The

unit vector E:' normal to the area Ae is positive directed inward. ¥Finally,

Py is the average free stream pressure. For simplicity, we may assume that the
vectors in Eq. (4-9) are all collinear and write the one dimensional equation

as
T=28 er + (po - Pe) Ae (4-10)

We define the effective exhaust velocity c as

A
L _ _E _
( c=V + (po pe) 5 (4-11)
Hence, the expression for the thrust magnitude is simply
e = - B -
T=gRe==~=cC p {4-12)

’

This equation gives the thrust in terms of the mass flow rate and the parameter
¢ which can be characterized as a function of the propellant used in the pro—l
pulsion system on board the vehicle. In engineering practice, we may use the
speFific impulse ISP as an alternate parameter which specifies the thrust
perfprmance. It is defined as the thrust impulse per unit mass of propellant

or

(4-13)

From the last two equations, it is seen that the specific impulse ISp may

be alternatively defined as the thrust obtained per unit mass flow which is
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precisely the same as the effective exhaust velecity. But it is a common

practice to use different units for ISp and c¢ through the relationship

ce=g ISP (4-14)

where g is the acceleration of gravity. Therefore, while ¢ 3is given in
meters per second, Isp is given in- seconds.
Using Eqs. (4-11) and (4-14) we have

v (pn = P
1 =-Xe, 0 el , (4-15)
sp g gB e

The mass flow rate can be computed from

B = Cop A, (4~16)
where
CB = mass flow coeffiecient, function of the propellant
p, = average pressure in the combustion chamber. This pressure is also
called the operating pressure.
Ac = area of the throat of the nozzle
Hence
v (py — p.) A
1 =-Its -8 (4-17)
? g g “gP, c

The ratio of the areas Ae/Ac can be expressed in terms of the expansion

factor Pc/Pé asg

Lo, L / , EL
k+1 k1 Pek /k+1.,. Pe 'k _
70 G JTpa-gd (4-18)

b

c
'A-(
e
where k is the ratio of the specific heats.

* From these relations, we see that tlie specific impulse is a function of

the following four factors



1. The nature of the propellant (CB > Vo o k)

2. The operating pressure P,

3. The expansion factor Pc/Pe

4. The altitude of f£light (g and Pp are functions of the altitude)
For a given type of propellant, we can evaluate its specific impulse

under soﬁe reference conditions. These conditions are:

For a solid propellant, P, = 70 atm., pc]pe = 70/1 at sea level.
For a liquid propellant, P, = 25 atm., p&/pe = 25/1 at sea level.

Let the specifiec.impulse of the given propellant evaluated at these refer-

ence conditions be denoted (ISP)0 . Then we define the coefficient

T
i = =B (4-19)

sp (Isp)o

This dimensionless coefficient characterizing the propellant under the actual
operating condition is now & function of four parameters—-the ratio of the
specific heats k , the altitude z , the pressure in the combustion chamber
P, and the expansion ratio Pc/Pe . If we assume that the ratio of the.
specific heats i§ the same for all propellants, then the function-

iSP = f(z,pc,pc/pe) can be tabulated for practical reference.

For an analytical integration of the equations of motion, we shall assume

that, under uormal operational conditions, the specific impulse IS s Of

P
equivalently the effective exhaust velocity ¢ , is constant.
Finally, if R d1s the radius of the Earth, then the range angle ¢ is

seen to be given by

’ . tan ¢ = R z - (4"20)

Now we see that, for each stage of the rocket vehicle, the dynamical
equations, Egs. (4-2) and (4-3), the kinematic equations, Egqs. (4-6)} and {4-7),

the moment equation, Eq. (4-8), and the mass flow program equation, Eq.‘(4—12);



constitute a system of six equations for the following eight unknowns

x
} = coordinates of the center of mass
z
A ) :
} = components of the velocity vector
Y
m = mass of the vehicle
o = angle of attack
g€ = angle of the thrust
T = magnitude of the thrust

Therefore, to specify the flight trajectory, we have at our disposal two
control variables. They may be taken to be the thrust magnitude T , and
the thrust direction ¢ . On the other hand, for a fully controlled flight,
the angle of attack o has to be adjusted constantly to render the moment
equation, Eq. (4-8), identically satisfied. Comnsequently, with a flight pro-
gram fully conlrolled, the remalning equations constitute a system of five
equations—-the Eas. (4-2) and (4-3), (4-6) and (4-7), and the Eq. (4~12)—
which provide the solution for the variables x , z , V , ¥ and m as
functions of the time t .

If the time history of the thrust magnitude T(t) dis prescribed in ad-
vance, then by integrating the mass flow equation, Eq. (4-12), we have the vari-
ation of the mass as a function of the time. If we assume a constant mass
flow rate, then m is a decreasing linear function of the time. In general,
the mass of the %ehicle is a decreasing function with respect to time as shown

in Fig. 4-3.
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Fig. 4-3. The Variation of the Mass of a Multi~Stage Rocket Vehicle

The figure represents the variation of the mass of a multi—stage rocket,
The first stage of the rocket is operating between the initial time and the
time tl . At tl the first stage is released providing a discontinuity in
the mass of the wvehicle. If a lapse of time Atl exists before the engine
in the second stage is ignited, during that time the vehicle is in coast flight
with constant mass. Next m continues to decrease between the time (t1 + Atl)
and ty and so on. In the subsequent analysis, we shall assume that all the
Ati are Zero.

The remaining control variable can be selected either as the angle of
attack & , or the thrust angle & or a combination of‘both by specifying
a relation between these variables and possibly other variables also. With
this selection the ascending program is completely gpecified.

In general; in considering an ascending program, we are trying to ob~
tain the optimum of some performance criterion. For example, for a prepro-
grammed motor, we would iike to select a time history for the thrust orienta-

tion such that the range achieved is a maximum. Problems like these involve
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the calculus of variations or the equivalent meodern control theory and will
not be discussed here. From an engineering standpoint, the selection of a
best flight control program is severely res:iricted by other technical con-
straints. For example, for a thrusting flight giving the maximum range, it
can be shown, upon using not unrealistic assumptions,‘that the flight must be
at maximum lift-to-drag ratio, with the thrust directed orthogonally to the
aerodynamic force, and heﬁce making a constant angle with the velocity vector.
But the thrust angle & , due to the technical construction of the propul-
sion system, cannot deviate at a large angle from the axis of the vehicle. In
general € 1is comstrained by a maximum angle € hax of a few degrees from
-the main thrusting line.

Another factor to be considered is the normal acceleration. In general,
due to structural ceastraints, this acceleration is severely limited. Hence,
for practical purposes, we are led to adopt some simple ascending program which
is satisfactory for the analysis during the preliminary stage of the design
project. The simplifying hypotheses will provide am analytical solution to
the problem considered. The analyticai solution has the advantage that it
‘"displays explicitly the many relationships among the different variables al-
Jowing a global analysis. For example, the solution will give-the approximate
size of the engine, and the weight of the propellant required to launch a cer-
tain given payload (final weight of the vehicle) into a prescribed final orbit.
From these aéproximate data, with the aid of high speed computers, we may up-

date the nmumerical results to obtain the exact solution to the problem.

4-3, ASCENDING fRAJECTORY AT COMSTANT FLIGHT PATH ANGLE
The equations of motion derived in section 4-~2 canmot be integrated
analytically. TFor a prescribed initial condition, and a specified thrusting

program, numerical integration using high speed computers has to be performed
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in order to obtain the variables describing the dynamical system as functions
of the time.

For advanced planning purposes, it is useful to adopt some simplifying
assumptions in order to obtain an analytical solution of the ascending powered
flight. Such a solution will give explicit relationships among the different
variables and permit a preliminary selection of the size of the wvehicle, its
aerodynamic chéracteristics, the propulsion system required to perform a given
mission. With these data we can then use numerical integration to readjust
the different characteristic values.

There exists a simple ascending law which can be used to approximate the
real powered trajectory. Using this program, as a first approximation, we
can assume that, after lift-off, the vehicle essentially follows a straight-
line trajectory having a constant angle of Inclinmation with respect to the local
horizontal. In reality, if-tha flight path angle is constant, the trajectory
will be a logarithmic spiral in the plane of the motion, but since we shall as-
sume a flat Earth model for the gravitational field, the trajectory with con-
stant flight path is essentially a straight line.

More specifically, we shall use the following assumptions to simplify the
equations in section 4-2:

a/ The powered flight trajectory involves short longitudinal range and
a relatively small altitude compared to the radius of the Earth. Hence, from

Eq. (4-20)

tan ¢ =

=N

I3

Therefore, we can use ¢ = 0 in the equations in section 4~2. This assump-
tion is usually called- the flat Earth assumption.
b/ TFor the same reason, the acceleration of gravity g can be con-

sidered constant for the altitude range considered.
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¢/ We shall neglect the aerodynamic force.
With these assumptions, the dynamical equations, (Egs. (4-2) and (4-3)

become, as can be seen from the simplifying force diagram in Fig. 4-4

dv

mo =T cos(e - @) - Wsin v (4-21)
- mv-%% =T gsin{e — o) + Wcos v (4-22)

Fig. 4-4. Simple Force Diagram Neglecting

Aerodynamic Force and the Curvature of the Earth

Since we assume that ¥ = const. , then dy/dt =0 . Hence, from

Eg. (4-22) we have the relation between the thrust and the weight
T sin{o — €) = W cos ¥y i (4~23)

In gemeral, the thrust is large as compared to the weight. Hence from this

equation we see that the angle (o - &) is necessarily small and we can take
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cos (g -~ o) =1 in Eq. (4~-21). Then we have the simplified equation

dv _ . _
mr =T~ Wsiny (4-24)
Using Eq. (4-~12) for the thrust we can rewrite this equation, using the rela-

tion W = mg
dm \
‘dV=-cm——_g31nYdt (4-25)

To integrate this equation for a multi-stage rocket vehicle, we refer to the
Fig. 4-3 and assume that all the time dintervals Ati between the separation
of the ith stage and the engine ignition of the {i+l)th stage are zero. Then

by integrating Eq. (4-25) starting from the time b, of the separation of

1

the (i-1)th stage, we have during the operation of the ith stage

m, (£)
= - - ' -
vit) = Vi-l cilog - g sin vyt (4-25)
i
0
where
V(t) = instantaneous speed at the time ¢t
vi—l = gpeed at the initial time of burning of the ith stage
c; = effective exhaust velocity of the ith stage
mi(t) = Instantaneous mass at the time t
m, = mass at the initial time of burning of the ith stage
0
t'=t - ti 1 o time interval from the initial time of

burning of the ith stage

Now, consider the operation of one single stage. For example, let us

assume that the vehicle is a single-stage rocket. At the burnout time t1

of this stage, the change in the speed is

1T

=V -V = B A -
AV = Vy - Vy=c¢c log m g sin Yt ‘ (4-27)
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where c¢ is the effective exhaust velocity of the stage considered,

m, =m is the initial mass and m, = m, (t,) dis the final mass of the ve—
0 10 1 11

hicle. If we neglect the gravitatiomal force, we have for the change in the
speed
)

AV = ¢ log — (4-28)

A

1 -

We see that, in this case, AV can be used as a measure of the fuel con—~
sumption. This quantity is called the characteristic velocity of the maneuver.
From this simple formula, we can see that AV must have a certain upper limit.
The exhaust velocity has an upper limit which depends on the propulsion system
used. For example, ordinary chemical propulsion systems currently provide
exhaust velocities up to 3000 m/sec, with a theoretical maximmm in the

neighborheood of 4000 m/sec. On the other hand, the ratio of the masses

- m. be the mass

molml also cannot be made arbitrarily large. Tet Am = m, 1

of the fuel spent. Then we define the fuel ratio

m
gy L (4-29)
0 0
so that we can write Eq. (4-28) -
Av = ¢ log 1 (4-30)
i-£

It is obvious that £ can never approach unity, since any amount of fuel al-
ways requires a certain provision of struéture for its operation. Therefore,
the characteristic velocity for a single stage is limited due to technological
constraints. nge optimistic predictions advance a figure in the neighborhecod
of 9000 m/sec for its ultimate vélue.

Equation (4-30) gives the performance of z single stage rocket in the
hypothetical situation of gravity-free, vacuum space. If we include the

gravitational force, the increase in the speed during a thrusting phase of a
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stage is given by Eq. (4-27). The term gtlsin ¥ charatcterizes the losses
due to the gravitational force. Because of this component; the performance
of a single stage rocket is further limited. Therefore, to obtain higher
final speed, one must use a multi-stage rocket.

Let T be the total burning time for a rocket vehicle having =n stages.
By repeated application of Eq. (4-26), we have the final speed at burnout, as-

suming a zero initial speed.

n . n
VB = .E AVi = ~ (.Z cilog ui) - gt sin v (4-31)
i=1 i=1

where ui is the ratio of the masses of the ith stage, defined as

m, mass of the vehicle at burnout of ith stage
T (4-32)
i0 mass of the vehicle at inditial time of ith stage

For the range and the altitude at the end of the powered phase, we use the

Eqs. (4-6) and (4-7) with ¢ = 0 , and v = const. We have

*3
——= [ V() at
Y 7o
. (4-33)

B - [T y(p) at
0

Using V(t) as given by Eq. (4-26) to evaluate the integral, we have, for

‘the case of constant mass flow B , (B = - g%) ’
2 My 12
X, = cos YFiil[Vi'lTi + CiTi(l + i—:—;;-log Hi)] - 587 sin v} (4-34)

where T, is the burning time of the ith stage. The final altitude is simply

zp = Xptan y (4-35)

C'2
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4~4, OPTIMUM STAGING

The final speed of a rocket vehicle, having a prescribed mumber of
stages is given by Eq. (4-31). This expression for VB is a fun;tion of the
characteristic parameters c; and By of the different stages, of the constant
flight path angle vy and the total burning time T of the powered phase. By
these considerations one may ask the following question:

"Is there an gptimum distribution of the masses of different stages
such that, for a prescribed burnout speed Vﬁ , the ratio mL/mg of the ini-
tial mass at launching to the final mass at the end of the powered phase is a
ninimum?"

If such a solution exists, it therefore gives the lightest rocket for a
prescribed payload (final mass e ) for a prescribed fimal speed VB .

In solving this problem, we write the ratio of the masses
ny »

m3 o+l

a1

)

i

i

(4-36)

-

v

*_
mF

where to ease the notation, in this section, we have used the subscripts as
follows
m, - total mass of the vehicle at the in?tial burning time of the ith
stage. This mass is also referred to as the gross mass of the
ith stage.
From Eq. (4-36) we see that we have defined the ratio S5 called the stag-
ing ratio, as

m
il _
s; = ——~—mi (4-37)

We notice that s, is the ratio of the gross mass of the (i+l)th stage to

i
the gross mass of the ith stage, the masses are all evaluated at the initial

burning time of the corresponding stage. "Also it is seen that m, = @ is

the initial gross mass of the rocket vehicle, while.mmn+l = my is the
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resulting payload of the operation.
There is a basic difference between the ratio W, as defined by Eq. (4-32)
and the staging ratio s; as defined by Eq. (4-37). This is illustrated by

Fig. 4-5 showing the mass distributiom in the ith stage of a rocket vehicle

- ' Mi+| >

Fig. 4-5. Distribution of the Masses im the ith
Stage of a Rocket Vehicle

The total mass shown is the gross mass m, of the ith stage. The mass m, .
denotes the mass of the fuel used during the operation of the ith stage, while
the mass mié denotes the mass of the structural components of the propulsion
system used in the operation of the ith stage. This mass is to be discarded

leaving the mass M.,y a8 the initial mass for the operation of the (i+1)th

stage. Hence, the mass of the vehicle at burnout of the ith stage is

=my o-mpe=m bmpy (4-38)
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Since we have used m, =M, to denote the mass of the rocket vehicle at

the initial time of the ith stage, the ratio Hy > as defined by Eq. (4-32)

nov becomes

m, = M, m,

- r dif _ . _ _Ef _30) -
ui - m, =1 m, (4-39)
kN 1

On thé. other hand, -the staging. ratio- s; s as defined by Eq. (4-37) is

g, =t _ 4 if is7 (4~40)
i m, m,
R 1

We define the structural ratio wy for the propulsion system used in the oper-
ation of the ith stage as

m, .
w, = ——= _ (4-41)

i m, . + m,
if is

Using this relation in Eq. (4-40) we have

m,

_— _ 1 if _
5i © 1 (1 - w.) m, (4-42)
i’ 1

By eliminating (mif/mi) between the Eqs. {(4-39) and (4-42), we have the re-

lation
u, - w,
P L -
S; =T = o (4-43)

We can now formulate the -optimization problem as follows.

The final speed VB s, the climb angle 7y and the total burning time

t are given. That is, we have from Eq. (4-31)

i §
- I cilog u; = Vé + gt siny = VO
i=1 -
where VO is therefore prescribed. We write this equation as a constraining
relation

-«

n

£luy) = iilcilog w + V=0 (4-44)
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The number of stages n , the different propellant characteristics e s and
the different structural ratios w, are also given. Tind a mass distribution

My s My s oo v e oo 5 B such that the following Ffunction

n o (uy - owg)
gu,y) = T s, = I —fr—= (4-45)
Y om g Gmey)
n
iz a maximum. This is equivalent to minimizing the produc=. 1 1/s. .
i=1

In solving this problem, we introduce a Lagrange multiplier A to form

the augmented function
F(ug) = g(ry) + Af () (4-46)

The solution to the problem is obtained by solving the system of (nt+l) equa-

tions
=0 » £ =0 (4-47)

for the (ntl) unkanowns By s Hy s o v oo 5 By and A . Explicitly, we

write the first n equations

n (U, - w,) c., .
i “1) 321 3 i
hEat

For each of the n equations (4-48), we have

e S A
ci(uiwi) n
iE][-(ui - mi)/(l - mi)]

Since the right hand side is the same for all equations, it is a constant and
we introduce a new constant K to replace the Lagrange multiplier A-
U
O RS (4-49)
1ty = ey

These n equations can also be_put intc the form.
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The problem is ther to evaluate the constant K . Using this expression in

the constraining relation (4-44), we have

n Ciﬂ)i
.2 cilog E-—-_-"“E = - VO (4-51)
i=1 i

The sum of the logarithms can be written as the logarithm of a product

k14 c,u C

log T (—221y fooy (4-52)
. - C, = K 0
i=1 "i
That is,
nocb, ey - VO
I——% ==
i=1 "1
Or finally, by separating the unknown X
n c V. n c
i_ 0 - 4 _
I (ci ~K) "=e .H (cimi) (4-53)

i=1 i=1

This equation can be solved for K , and subsequently the mass distribution
By s Mg s o o oy U is obtained from Eq. (4-50). Obviously the equation
(4-53) can only be solved numerically. To obtain an explicit solution, sim-—

plifying assumptions have to be made. We have the following special cases.

4-4,1., Ali the Propuldion Systems are Similar

If we assume that all the stages use the same propellant, and regardless
of the difference in size, it is possible to achieve the same structural ratio

for all the stages, we have

. (4-54)
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Then, by Eq. (4-50), the mass distribution is the same for each stage. We

have

By THg T e v S W, TSR (4~55)
The equation (4-53) for K becomes
ne v0 nc
{(c =K =e (cw
Solving for K
volnc .
N K=c][l - we 1 _ (4-56)
Using this solution in Eq. (4-55), we have for the common mass ratio
- Vb/nc
u=e (4-57)
We notice, by Eq. (4—45), that the staging ratios are also the game
= o= = == =]J.-UJ
$; =8y = .. . =5 =s§=T
or, explicitly in terms of the given characteristics
- Vofnc
s=y_o 5 1] (4-58)

The final payload is then obtained in terms of the gross-mass of the vehicle

at launchipg
- Volnc
my = m (o) [2 - 1" (4-59)

W

Finally, from Eq. (4-31), we have the final speed

Vg = - ne log u - gt sin v (4-60)

The special case we have analyzed is highly hypothetical. HNevertheless,
the solution is obtained in closed form ahd it provides a first estimation of

the distribution of the masses for different stages.
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4-4.2, The Propellant Used is the Same for All Stages

If we assume that the propellant used is the same for 21l stages, but
because of technological construction, the structural ratios are all differ-

ent, then we have the simplificatien
Cqy S €y =+ o « T C_=10T (4-61)

Equation (4-53) for K becomes

v
(c - K =¢e Ocnc(wlwz...mn)c (4-62)
Solving for K ,
V./nc
- - 1/n_ "0 _
K=c[1 (wlwz...wn) e ] (4-63)
The mass distribution is given by Eq. (4-30).
w, - Vofnc
n; = a e (4-64)

1
(mlw2"'mn)
We notice that the ratio ui/wi is the same for all stages. On the other

hand, by Eq. (4-43), the staging ratio is

wi e“VO/nc
Sy = T mi) [(m m - )1/n - 1] (4~65)
172"
The f£inal payload is
e—Vofnc anw
mp = myl e R (4-66)
(wlwz...mn) i=1 i
Finally, we have for the final speed
n
V3 =~¢ I logu, - gt siny (4-67)
i=1 +

It is easy to verify that the equations in this section are reduced to

the equations derived in the preceding section if we put Wy =Wy = cee S0
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4-4.3. The Structural Ratios are the Same for All Stages

The special case considered in the previous section is very close to
the practical realization of a multi-stage rocket vehicle. There exists
another special case, namely when technological realization zllows a common

structural ratio for .all the .stages_although differeﬁt propellants are used.-

Then we have the simplification
Wy = W, = o o o =W = @ (4-68)

In this case the equation (4~53) cannot be solved explicitly for K . The

mass ratio is here .

— __.1.._._.. —

It is geen that Hy is a decreasing function of c; - Therefore, if the

propellants used are such that ey < c, »We have My > Hy - The staging

ratio is givemn by Eq. (4-43) written as

s; = ?i—%;Ej-cui - ) (4-70)

We see that it varies in the same direction as L
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CHAPTER 5

THE RETURN TQ THE ATMOSPHERE

5-1. INTRODUCTION

In Chapter 3, the trgjectory for flight outside the atmosphere, assumed
to be spherical with a finite radius, R , was consi&ered. We have seen that,
if the ﬁurnout position B , (Fig. 3-1), is outside the atmosphere, the re-
sulting trajectory is a Keplerian conic until the atmosphere is reencountered.
In the case of an elliptic irajectory, if the periapsis ‘distance rp is less
than the radius R of the atmosphere, a condition.expressed by the inequality
(3-71), the trajectory will intersect the atmosphere at a point E , the
entry positiom.- - In the case where inzauality 65—715 is not satisfied, the ve-
hicle will be in an elliptic orbit around the Earth if the initial speed is

less than the escape speed, that is if
- ) ’ LV, £ ‘/g {(5-1)

After the mission has been accomplished, to bring back the vehicle, one
must perform a series of maneuvers to change the initial orbit, designated by
El , to a final orbit, §2
tion E (F¥ig. 5-1). From this point on, the vehicle is in the atmosphere

s intersecting the atmosphere at the entry posi-

and follows a flight path subject to-the gravitational and atmospheric forces.
The £light path from the emtry position E to the landing point C 1Is called
the reentry flight path and its analysis is the subject of several later chap-
ters. In this Chapter, we shall be concerned with the maneuver performed to
change the noanintersecting orbit tl into the intersecting orbit Ez . Im
general, the means of accomplishing a change of orbit, or transfer, will be by

firing the rocket on board the Yehicle to change its velocity, thus propelling



the vehicle into a new orbit. If the rocket éngine provides a high thrust,

the burning time is generally short, compared with the orbital period. Hence,
it can be assumed that, during a thrusting phase, the position of the vehicle
remains essentially unchanged while the velocity undergoes a change impulsively.
Furthermore, we shall be concerned with the last orbital change before reentry.
Hence the orbit Ei is the final nonintersecting orbit resulting from a series
of maneuvers. At a point D in this orbit, referred to as the deorbit posi-

tion, a velocity impulse AV will be applied to the vehicle to change the in-

itial velocity V;' into a new velocity VZ , thus injecting the vehicle into
the descending orbit £, . This orbit, initiated from the point D , inter-—

2

sects the atmosphere at the entry posit?on E at a distance R from the cen-
ter of the Earth. The speed Ve , and the flight path angle Y at the
point E will be referred to as the entry speed and the entry flight path
angle,

In the subsequent analysis, we shall assume that the initial orbit El'
and the deorbit positior D are prescribed. Hence, we have the polar equation
of the initial orbit (Fig. 5-1)

2
al(l - el)

1+ elcos e

T (5-2)

where ay is the semimajor axis, and ey the eccentricity of the orbit El .

The deorbit position D dis defined by the polar angle 6. measured from the

D

direction to the periapsis of the initial orbit taken as direction of refer-
ence. The distance from the center of the Earth-to the point D is demoted

by Ty - it is given by Eq. (5-2) with 8 = GD

is on the second half of .the orbit, that is, GD > 7 . The firing of the

rocket ig performed ‘at a point of the orbit where the vehicle is on its way

. In general the point D

\
toward the periapsis. From the previous analyses; it is seen that, if eD is



specified, the speed Vl and the flight path angle Y1 at the peint D are

also known. The angle ¢ between the directions to the deorbit position D

and the entry position E , measured at the center of attraction 0 , is

the range angle. It is function of the descending orbit E2

Fig. 5-1. The Desceanding Trajectory

A sﬁbcessfyl recovery of the vehicle depends on the condition at entry,
namely on the location of the point E , the entry speed Ve - and the entry
flight path angle Yo - Therefore, in this Chapter we shall consider several
types of descending trajectory EZ . Eékh family of trajectories, initiated

from the deorbit positiom D , is~such that a certain condition at the entry



position E is prescribed. More specifically, we shall successively con-
sider families of trajectories such that: |

a/ the entry speed Ve is prescribed.

b/ the entry angle Yo is prescribed.

¢/ the entry position, or equivalently (for the planar case under con-
sideration) the range angle ¢ is prescribed.

The first two problems are associated with the safe recovery of the ve-
hicle since the heating and the deceleration during atmospheric entry depends
on the entry speed and the entry angle. The last problem is associated with
the selection of the landing point.

ITn each problem we shall first evaluate the impulse velocity required
to achieve the entry condition specified. It will be shown that, for each
problem, there exists a family of descending trajectories satisfying the pre—
scribed entry condition. Néxt we shall compute the trajectory requiring the
minimum AV , since the minimum of this characteristic velocity alse corre-

sponds to the minimum fuel consumption of the maneuver.

5-2. DESCENT TRAJECTORY FOR GIVEN ENTRY SPEED

In this section, we shall consider the family of descent trajectories
initiated frop the deorbit position D such that the resulting speed Ve at
the entry position E is equal to a prescribed value.

At the-point D , velocity impulse Eﬁ is applied to Fhe vehicle to
7
velocity. "The rgsulting flight path ﬁ% is the descent £light path. It inter-

change the initial velocity V; into a new velocity called the deorbit

sects the atmosphere at the entry position E . Along the trajectory &, ,

the total energy is comstant as shown by Eq. (3-19). By evaluating this con-

stant energy at the points D and E , respectively, we have



2 m_ 2 m _
v2 rD-v 2 (5-3)

where from Eq. (5-2), the radial distance T to the deorbit position D is

prescribed and ig given by

a; (- ei?

r = = . (5-4)
D 1+ elcos BD

with BD the true anomaly specifying the point D .

We define the nondimensional speeds

we et e
ey ALEN ey Jele
(5-5)
Note that u]rD is the circular speed evaluated at distance r, - We shall

—_— foveg o -
use uz to denote the scaled ve}oclty Vi/ ku?rb . Distances are measured

in units of R -, with the nbndimensional distances defined as
T a a
AER s 9 ER s % EF (-6

In terms of the nondimensional quantities, Eq. (5-3) becomes

2 .2 ,
u, - 2 = u_ - 2 (-7

Then the required dimenzionless deorbit speed u, to achieva the prescribed

dimensionless'entry speed u, is

uy = Sug + 2(1 - X) (5-8)

It is convenient for the analysis to define a velocity axis system
Dxy , 'the hodograph space, such that its originm is at the deorbit position D ,
the y-axis along the position vector ;;- s positive outward, and the x-axis

along the perpendicular to the position vector, positive along the direction

of the motion. Note that the axis Dx represents the horizontal at the



—
u

1 is defined in

point D . In this axis system, the Imitial velocity
polar coordinates by the dimensionless speed uy and the flight path angle

Yl (Fig - 5'_2)

Fig. 5-2., Dimensionless Velocity Space

Since the initial orbit is given and the deorbit position prescribed, u, and

Y, are known quantities. From

2 2 1
Vi =u -3
p %
comes
20, = A
o=/ (5-9)
%

The flight path angle is given by Eq. (3-32).

14 elcos BD

Using Eqs. (5-4) and (5-6), we can write
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a- ei)
cos Yy =8y / A(zul - A)
o F e T (5-10)
N A(:z{xl =) = aiil - eg)
sin Yy == _ 1(2&1 - )

Now consider Eq. (5-8) for the deorbit speed u, -

9 is constant for all possible descent trajec-

Since ue and A are

prescribed, it is seen that u
—
Y2

space is a circle centered at D and having a given radius wu

tories. Hemce, the locus of the terminus of the velocity in the hodograph

5 as given by

Eq. (5-8). For each direction of this velocity, defined by the flight path

, - The required velocity impulse T is

. —
angle Yy » We have a wector u

such that

— = —>
u1 + Au = u2

»

Its magnitude is obtained by applying the law of cosines to the velocity tri-

angle in Fig. 5-2. Thus, .

_ /[2. 2 ;
Au‘— uy + u, - 2u1u2cos(Y2 Yl? (5-11)

The direction of Au is defined by the angle & £rom the horizontal Dx .
Applying the law of sines to the velocity triangle in Fig. 5-2, we have
B
sin(§ - Yz) = T sin(y2 - Yl) (5-12)

From Eqs. (5-11) and (5-12) it is apparent that the deorbit flight path
angle Yo for t?e descending trajectory can be used as a parameter. To each
angle Yo coérespo?ds an impulse velocity Eﬁl » and hence, a trajectory
E2 + The elements of this trajectory can be obtailied by using the equations

derived in Section 3-5, with the subscript B replaced by subscript 2 ,



and Ty by Iy -

We have for the semimajor axis of E

2
22__1
rD 2 - ug
or
a, = —A 5 (5-13)
24 - ue

For the eccentricity of the descending trajectory, by using Eq. (3-67) we

have

ey = /1- @ - wD [l + 20 - D] cosy, | (5-14)

The periapsis distance is given by

rp 1- ¢/i - (2% - u?)[u? + 201 - A)] coszy

Z _ e’ e 2
T = 5 (5-15)
D 2xn - ue

Hence we have the condition for the trajectory EZ to intersect the atmosphere

b

1- J/i - (2) - ui)[u + 21 - A)] coszv2

>

>
@ oo

2A - u

) Solving for Yo > We have the condition

u
e ;
cos Y, . (5-16)

7\/1:24-2(1-3\)

—
This condition restricts the locus of the terminus of the vector u, in the

velocity space to an arc of a circle (Fig. 5-2).
The entry angle at the entry position is obtained by writing that the
angular momentum is constant along the descent orbit. We have, by evaluating

this constant at the point D and at the point E , respectively
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rnvzcos Yo = RVecos Yo

Hence, in terms of the dimensionless variables

Auzcos 72
cos y = ——<—
e u
e
or
5 .
ly/ue + 2{1 - 2)
cos v, = = cos Y, (5-17)
e

The orientation of the descent trajectory E2 is defined by the angle
w between the reference direction, which has been taken as the direction to
the periapsis of the initial orbit, and the direction to the periapsis of the
descent trajectory (Fig. 5-3). The angle w®w is called the longitude of peri-

apsis of the descent trajectory.

Fig. 5-3. Geometry of the Descent Trajectory

-
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To evaluate the angle u , let us recall two important properties of the el-

lipse already menfioned in Section 3-4. Let O, be the second focus of the

2

elliptic trajectory EZ , the first focus being the center 0 . The line

002 is the line of apses.

First, if D is a point on the ellipse E2 , then

D0 + D02 = 282

(5-18)
where a, is the semimajor axis of 52 .

Next, if DN is the normal to the ellipse at the point D , then DN
is the bisector of the angle ODO2 . Since the flight path angle Yo at
the point D is defined as the angle between the horizontal at D , which
is perpendicular to the position vector 63 R agd the velocity V;' , which

is tangent to the ellipse at the point D , this property is expressed by

the relation

2iOD02 = 2y, (5-19)

- — —_—
Now let n be the angle between the vectors 0D and 00, (Fig. 5-3).

Using the law of sines in the triangle ODO2 and the property expressed by

Eq. (5-19) we have

Do, 00, o

sin n sin 2y, - sin(ZY2 + 7

But 00, = 2a,e, and by the property expressed by Eq. (5~18) Do, = 2a, -y -

Hence, B
222 - T _ 2a232 - T, - (5-20)
sin n sin’ 2y, sin(2y, n)
Therefore, the first equation {5-20) gives ’ : ' )
(Za, - A) -
sin n = —2 sin 2y
- 2a,.e 2

272
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or 2
) Iue + 2{1 ‘-_.l)] Sin,z"(z X
sin n = BE— i (5-21)

2., 2 2
2/1 -~ (2x - ue)lué + 21 - 2)] cos Yy

Another expression for n is obtained by using the second egquation (5-20).

We have,
com 1 = (2a2 - rD) sin 2y, } (2a2 - 1) sin 2y,
I, - (2a2 - rD) cos 2Y2 A - (2a2 - 1) cos 272
or
2 . 2
[ue +2(1 - 2)] sin 2y2 [u” + 21 - A)] tan Yo
tan n = =

2x - uz) - [uz + 2(1 - A)] cos 272 B [(2x - 1) - uZ} + tanz'y2
(5-22)

The lomgitude of periapsis of the descending trajectory E2 ig then given by
W = BD - (r+ 1) (5-23)

Finally, the range angle ¢ from the deorbit position to the entry posi-

tion is given by Eq. (3-80), written as
¢ = arc cos %;{Auicoszyz - 1) - arc cos i;{uﬁcoszyz - 1) (5-24)

5-3. MINIMUM IMPULSE FOR ENTRY AT GIVEN SPEED

We have seem in the preceding section that, if the entry speed alone is
specified, then there exists a family of descent trajectories which is a
function of the deorbit angle Y, - To each angle Yy corresponds a descent
trajectory, and hénce an impulsive change, a , in the velocity. The mag-
nitude of this imPulse, the characteristic velocity, is a measure of the fuel
consumption for the maneuver. In this section we shall compute this particular
descent trajectory such that Au is a minimum. '

Let yg be the limiting value of th; angle vy, selected as the param—

. eter for optimization. This value Yg is given by the equality sign in
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condition (5-16). Then from Fig. 5-2, if Yg-S Y; » to minimize Au , we
must select Yo =Yy - The velocity impulse. Du is tangential to the imitial
orbit, at the deorbit point D , to reduce the speed from u, to u, .

Hence, we have the condition for optimum tangential deorbit for a givem entry.

speed
u, -
> cos Yy : (5-25)
A/ul 4201 -2
e
Using Eq. (5-10) for cos Y; » Ve can write this condition
, 20 -DA-ed) ol
u, < R (5~26)
Al - el) a; = 2al + A

- This condition expresses that, for a given initial orbit, with a prescribed de-
orbit‘position, the prescribed entry speed wu, must be less than a certain
value for an optimum tangential deorbit to be possible.

For tangential optimum deorbit, we have the following results oﬁtained
by putting Yo =Y in the general expressions for the descent trajectory de-—

rived in the previous sectiom.

First,

COS Y, = €OS Yy = Oy (5-27)
The minimum characteristic veloecity is simply
Au = - (5-28)

where u, and u, are given by Eq. (5-8) and Eq. (5-9), respectively.

The direction of the optimum velocity impulse is given by

§ =7 +.Yl {5-29)
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The major axis is the same as given by Eq. (5-13) but the expression for

the eccentricity becomes

e = /1- @ - WAl + 20 - 1] cos?y, (5-30)

Using Eq. {5-27) we can rewrite this expression

ﬁ ai(l - ei)(ZA - ui') [ui +2(1 - V]
e = —
2

A2a, - A) (5-31)
1
The entry angle is given by Eq. (5-17) written as
ay a- ei)[ui + 2(1 - A1
cos. Y, = E;' oy - 1) (5-32)

The longitude of periapsis of the descent trajectory is given by Eq. (5-23),

where now the expression for the angle n is

ay[v2 + 2Q1 - )\)]/(l - A2y - N - o2 - eD)]

tan n = (5-33)

R(ZGl - A) - ai(l - ei)[ui + 20 - M)]

The range angle is given by Eq. (5-24). The polar equation of the entry orbit

is
Py
FETF e2c05(6 - w) (5-34)
where ey ig given by Eg. (5-31) and
p o2 - A + 2@ - W1
2o @ -y =2 1 e (5-35)
R 2 2° (2a1 - A)
The entry position E dis defined by the polar angle GE
6., =60.%+ ¢ (5-36)

where ¢ ds the range angle. BE can also be computed from Eq. (5-34) with
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r=R and 0 = BE .
A tangential-deorbit is optimal when the entry velocity is small as con-
strained by the inequality (5-26). When this inequality is not satisfied, the

ninimum deorbit angle Yg for the descent trajectory to intersect the atmosphere

is laxger than the initial flight path angle Y1 (Fig. 5-4)

Fig, 5~4. Optimal Velocity Impulse when ng; Yy

In this case, as can be seen in Fig. 5-4, the minimum Au corresponds

to Yy = Yg . S;nce the limiting value of Yoy is given by the equality sign

in (5-16), we have

. .
cos ¥, = £ (5-37)

Aﬁiq-z(l-x)

The ninimum characteristic velocity is given by Eq. (5-11), and its direction

by Egq. (5-12) with the value of Yoy obtained from Eg. (5-37). Using Eq. (5-37)

in Eq. (5-17) we see that cos Ye‘; 1 . ﬁence& the entry is grazing
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vy =0 (5-38)

The eccentricity of the descending orbit is given by Eq. (5-14), which by vir-

tue of Ey. (5-37), becomes

(5-39)

The longitude of periapsis of the desecent orbit is given by Egq. (5~23). To

evaluate the -angle n , we notice from Eqs. (5-14), (5-21) and (5-22) that

2 2 '
(2x - ue) - [ue,+ 2(1 - A)] cos 272

cos n = 282 {5-40)

From Eq. (5-37)

ui(Z a5 - 2% -

2
cos 2y, =2 cosy, - 1=
2 2 Az[uz + 201 -~ A)]

Hence, upon substituting into Eq. {5-40) we have

AZ 2
cos N = ————— (5-41)
A ('lle - )t)
The polar equation of the entry orbit is
P2
TETF ey cos(f — w) (5-42).
where now, by using Eqs. (5-13) and (5-39) ) \
P u2
2 _ B 2, _ e _
= aﬁ(l e2) =3 ' (5-43)

The position of entry is given by the polar angle B8 It is obtained by

r

putting r =R , and 6 = 6_ din Eq. (5-42). R

E

5-4. DESCENT TRAJECTORY FOR GIVEN ENTRY ANGLE
In this section, we shall consider the family of descending trajectories

initiated from the deorbit position D , such that the resulting flight path
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angle Yo at the entry position E is equal to a prescribed value.

The notation-used is the same as in the previous sections. We now write
the equations for the conservation of energy and conservation of angular momen-
tum, Eqs. (5-7) and (5-17), using the dimensionless variables defined by

Eqs. (5-3) and (5-6).
u — 2 =1 — _2A (5‘44)

and

I

u_cos Y, Auzcos Yy (5-45)

In the hodograph space Dxy as defined in section (5-2), let x and y be

the components of the deorbit wvelocity u Then

2 .

X = u,co8 Y,

(5-46)

¥y = uzsin Yo
Therefore

ug = x2 + y2 ~  (5-47)

Using these equations, we rewrite Eqs. (5-44) and (5-45)

(x2+y2)-2=u§-21

(5-48)
u cos Y = AX
e e

By eliminating u, between these two equations, we have
2 ' 2

X _ ¥ -1
2(l2 —D@OSZYE) 20 -1

(5-49)

2 2
(A" - cos Ye)

This is the equation of a hyperbola symmetric with respect to the axes in the

velocity coordinates system Dxy (Fig. 5-3).
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Ye = 30°

20°
1Q°

X -

. Fig. 5-5. Locus of the Terminus of the Deorbit Velocity
for Entry at Given Angle

The equation expresses that, for a deorbit from a prescribed position

D , at a given distance A , in such a way that the entry angle is

must

nFl({<

equal to a prescribed value, the terminus of the deorbit velocity

be on a branch of a hyperbola defined by Eq. (5-49). Each hyperbola corresponds’

to a specified entry angle Yo ° In particular, when the entry is grazing,

cos Y, = 1 , and we have the limiting hyperbola !



5-18

2 2
" soo D " L (5-50)
D)

Figure 3-5 gives the plots of several ByperBbolas, loci of the terminus of the
) N .

2

tance ratio A = 1.18 .

deorbit velocity- ,» for several values of Yo and for an initial dis-

To each prescribed value Yo we have a branch of an hyperbola. When
the terminus of the vectof E;' moves along this hyperbola, it generates a
family of descent trajectories, all intersecting the atmosphere at a point E
at a distance R , with the prescribed entry angle Yo - The deorbit angle
Yo can be used as a parameter for the family.

If the eatry speed is also prescribed, then the magnitude of u, is
prescribed as given by Eq. (5~8). UThe descending orbit is obtained by find-

ing the intersection of the circle of radius u, and the hyperbola given by

Eq. (5-49). We have, by using the Egs. (5~8) and (5-46)

xz = [uﬁ + 2(1 - A)] cosz'y2
(5~51)
yz = [u2 + 20 - A}] sinzy
e . 2
To simplify the notation, we rewrite Eq. (5-49) as
h ax? - gy* = 1 (5-52)
where
Az - coszve
o = 5
2(A -~ 1) cos Ve
(5-33)
I —
T €20 - 1)

By substituting the Eqs. (5-51) into Eq. (5~52) and solving for Y, 5 We

have
u_cos
e Ye

(5-54)

cos Y, =

A/@ﬁfza-n
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The branch of the hyperbola corresponding to the velocity F;: pointing in
the same direction as the motion along the initial orbit corresponds to a
solution providing two points of intersection, hence two values for Yo -
One solution Yo > 0 , gives a high descent orbit, while the other, Yy < 0
gives a low descent orbit. The solutions are real when

uecos Ye )
<1 . (5-53)

VAR TS

/20 -1 _
u, > A 2 5 (5-36)
A -~ cos Yo

For a given entry angle Yo o there exists a lower bound for a predetermined

or, that is, when

entry speed for an entry trajectory to be physically possible. On the other

hand, we can write Eq. (5-55) in terms of a condition on Yo

l/uz-}- 21 - )

u
e

cos ¥, < (5-57)

Hence, if the eni:ry speed is prescribed, there exists a lower bound for the
entry angle Yo b for an entry trajectory to-be physically possible.

By prescribing both Yo and u, o for a given initial orbit,‘ that is,
for a given ey and e, » we can also vary the deorbit position, by wvary-
ing A , to. satisfy the physical constraints on the ertry. To study the in-

fluence of A on the condition for entry, we rewrite the conliition (5-56)

v -
_e.’} _%A_Q_:-;ZQH (5-58)
ﬂ: : AT ~ cos Yo

Y R

With Yo fixed, the right hand side of the inequality (5-58) is an increas-

ing function of A . Hence its minimum corresponds to the position of
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deorbit at the'periapsis of the initial orbit.
A= al(l - el) {5-59)

We conclude that, when Ve and Y, are both prescribed, for a given initial

Y

orbit, single-impulse deorbit is always possible if the following conditiom is

-satisfied

Ve 2a1(1 - el)[al(l - el) - 1]
- 2 2 2
/@% al(l - el) - cos'y,

We now return to the case where only the entry angle Yo is prescribed.

\2

(5-60)

Then, there exists a family of deorbit trajectories initiating from a prescribed
deorbit position D . Using the deorbit flight path angle Y, as a parameter
for this family, we can calculate the elements ;f the descent trajectory selected.
This can be obtained by expressing the entry speed u, in terms of the variables
Ao, Yo and Yo and then‘substituting into the equations obtained‘in sec-

tion 5-2. For *ue we have .

_ 2(A - 1) -
u = A V//;z 5 5 cos v, _ (5-61)

cos,yz - cos Te

The deorbit speed u, is given by Eq. (5-45).

_ 2 - 1) _
u, = J//rz 3 5 CoS Y, - (5-62)
ATcos Y2 ~ ¢os Te

The magnitude of the velocity Iimpulse X » and itg direction & , are given

by the Egs. (5-11) and (5-12) respectively, with the imitial épeed given by
Eq. (5-9) and the initial flight path angle by Eq. (5—16). The dimensionless
semimajor axis oé the descending trajectory is given by Eq. (5-13), written
with the value of u, given by Eq; (5-61) as

lzcoézyz - cosz‘ye

(12 = 2 2 (5"63)
« 20x cos*y, = cos Ye)
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The eccentricity of the descending trajectory is given by Eq. (5-14). 1In

texrms of A , Yo and Yy s this is

4A(h - (A coszy - coszy ) coszY COSZY
_ 2 e e 2
e, = 1- (5-64)
2 2 2 2
(A“cos Yy — €OS Ye)

The longitude of periapsis of the descent trajectory is given by Eq. (5-23),

vhere now the angle n dis given in terms of the selected variables as

2
2(x - 1) cos Yetan Yo

tan n = (5-65)
2 2 2 2
A" - (2x - 1) cos Ye] - cos y tan'y,
The polar equation of the entry trajectory is
Py 6
=1+ ezcos(e - w) -’ (5-66)
where e, is given by Eq. (5-64) and
'p2 22(x ~ 1) cosZYecosz'Y2
= (5-67)

R Azcoszir cosz've

The position of entry E dis defined by its polar angle BE which is obtained

by putting r =R , and 6 = 6_ in the polar Eq. (5-66).

E

5-5. MINIMUM TMPULSE FOR ENTRY AT GIVEN ANGLE

We have seen in the preceding section that, for an entry at a prescribed
angle initiating from a prescribed deorbit position, there exists a family of
descent trajectories which is a function of the deorbit angle‘ Yy - These’
trajectories are such that the terminus of the deorbit velocity E; is on a
“hyperbola defined by Eq. (5-52). 1In this section, we shall select from among
the descent trajectories in this family the one that results in a minimum

characteristic velocity Au . That particular trajectory is called the optimal

deorbit trajectory for a prescribed entry angle.
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In the hodograph space (Fig. 5-6), consider a hyperbola, the locus of

the terminus of. E; for a given entry angle Yo - In this hodograph space,
the initial veloeity E; is prescribed. Let X and vy be the projectioms
of u; on the axes of the coordinates system Dxy . We have from Egs. (5-9)
and (5-10)
2
1 1 1 p (5-68)
2 2
~ . (Zul - - al(l - el)
yp T wsinyy = - Xag -

The minus sign for yi is taken if the point D dis on the second half of the
initial orbit. -

The minimum Au is obtained by finding the shortest distance from the
poigt with coordinates (x1 ’ yl) to the hyperbola. Let superscript (%)
denote the optimal elements. The point with coordinates (x% s y*) giving
the terminus of-the optimal deorbit velocity G;*;En the hyperbola defined by
Eq. (5-52) is the point where the normal to the hyperbqla passes through the
point Cxl s yl) .

Let the equatiom of this hyperbola be
2 2
f(x,y) =ax -By -1=0 (5-69)

where & and $ are defined by Eq. (5~53). The components of the normal to

the hyperbola are given by

of _
e 20x
_ (5-70)

of

—_— = 28

v «BY

Requiring that this normal be collinear to the vector x4 gives
i R A &

o By F5—71)
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Y
D Y — X
7’2* Ug
(X;, Y;)
TPy /.
AU*
(X*, Y¥*)

Fig. 5-6. Optimal Velocity Iriangle for Entry at Given Angle

% %
The set of Eqs. (5-69) and (5-71), gives the coordinates x ,v) , com

— %
ponents of the optimal deorbit velocity uy, -

It is comvenient to use the deorbit angle Y, as the wvariable. Let

*
. .
z = tan v, =I5 (5-72)
X

be the tangeﬁt of the optimal deorbit angle. Then from Egs. (5-71) and (5-72)

we have
. % ay1,+'Bxlz
X = ETR B
(5-73)
- % GYy + Bxlz
IR AR CE N

Upon substituting into Eq. (5-69) we have a quartic equation in z
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4 3 2 - -
Aoz + Alz + Azz + A3z + A4 =0 . (5-74)

where the coefficients Ai are given by

Ay = B

A1 5-2&B2xiy1

a, = o’8y> - as%l + (a + )7 (5-75)
AB g - 2a23x1y1

A4 Z - a3yi

Hence, the optimal deorbit flight path angle is obtained b& solving a quartic
equation. In general, this equation gives four roots corresponding to four
normals drawn from the point (xl s yl) to the hyperbola defined by Eq. (5-69).
One of these roots corresponds to the minimuwm of Au .
The elements of the optimal deorbit trajectory can be easily obtained in
terns of 2 by using the general equations derived in the preceding section.
First the components of the deorbit velocity E;* a;e given by Eq. (5~73);

Next, the minimum characteristic velocity is simple

2

n' = fa - x5 -y (5-76)

*
The direction of M is the directiomn of the normal to the hyperbola which
* ® & : —r %

has components (ax , - By ) .- Hence, if & is the optimal angle of Au
measured from the xz-axis, we havs

: z coszy

% . .
tan & =—E'z=-——--—e—-— (5-77)
o 2 2
. AT - cos Yo

The entry speed is given by Eq. (5~61). Since

coszy* _ iy N
= o
2 1+ tgnzyz 1+ z2
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then

E3 -
g = A 5 2(x 21) 5 (5-78)
: A= 1+ z27) cos Yo

The optimal deorbit speed is given by Eq. (5-62) written as

F_ /20 -n0a+7D

= cos vy (5-79)
2 //12 - (1 + 22) cosZYe €

The dimensionless semimajor axis of the optimal deorbit trajectory is given by
Eq. (5-63). We have
% 12 - (1 + 22) coszye

o, = - : (5~80)
2 g[k -1+ zz) coszve]

The eccentricity of this orbit is

% HO-Dr- QA+ 32) coszwe] cosz*\(e
e, = 1-

(5-81)
[lz - {1 +-22) coszyelz

The longitude of periapsis of the optimal deorbit trajectory is given by

Eq. {5-23) with the angle n expressed in terms of A , Yo and z as

2(h - 1) = coszye

tan n = {5-82)

[12 - (22 - 1) coszl ] - zzcoszy

. e e
The polar equation of the entry orbit is given by Eq. (5-66) where e, is
given by Eq.'(§—81) and ’ ) '
pz 22 (x - 1) cosz'ye .

- = . (5-83)
R 12 - 1+ 22) cosz’ye

The position -of entry E is defined by its -polar angle GE which is obtained
by putting r.=R and @ = 6p in the polar Eq. .(5-66).
The formulae (5-78) - (5-83) are ex%ressgd in, terms of the wvariable

* . .
z = tan Y, , solution of the quartic equation (5-74)-. By using, instead of
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* * %
z , the components x and y of the optimal deorbit velocity E; as
given by the Egs. (5-73), we have the following alternate formulae.
The optimal deorbit speed is
® * *
u, = VX 2 + v 2 (5-84)
Hence, we have from Eq. (5-44) for the entry speed
® %
u:=/xz+y2+2(?t—l) (5-85)
Also, from Eq. (5-13)
o, = A (5-86)

= %
2 2—(x2+y*2)

The eccentricity is obtained from Eq. (5~14). With the aid of Egs. (5-51)

and (5-85), it is seen that

* .
= /2 - 12 4 22 (5-87)

For the angle n in the evaluation of the longitude of periapsis of the op-

timal deorbit trajectory through Eq. (5-23), we rewrite Eq. (5-22)

2
u2 tan YZ

tan n =
(1 - ug) + tan2Y2

Then, using the Eqs. (5-72) and (5-84) to simplify the expression

% %
tan n = *EgjL:gi - (5-88)
d-x
Fiﬁally, .
Xy
P
2 _ % %2
R - %l -e ™)
or using Eqs. (5-86) and (5-87),
. . ‘
o _ )
-2 o2, (5-89)
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5-6. DESCENT TRAJECTORY FOR A GIVEN ENTRY POSITION

In this sgction, we shall consider the family of descent trajectories
initiated from the deorbit position D and intersecting the atmosphere at a
prescribed position E . This .entry position can be defined by the range
angle ¢ measured from the initial position vector oB (Fig. 5-7).

Let u, be the deorbit speed and Yy the deorbit f£light path angle at
the peint D . They are the initial speed and fiight path angle for the
déscending trajectory EZ . The equation relating the initial speed, flight
. path angle, radial distance and range angle has been derived in Chapter 3,

Eq. (3-86). We rewrite this equation, using subscript "2 to replace subscript

B

Ll—:_ggg—il-tanzyz - sin ¢ tan 72 + Ll_:_£%§_$1_+ cos ¢ -~ A =10 i
Y . b} (5-90)

In the hodograph space Dxy as defipned in section 5-2, let x and y be the
. .
u

5, on the axes

projection of the deorbit velocity

X = u,c08 Y,

(5-91)
¥ = u,sin vy,
Hence,
ug = xz + yz
) (5-92)
= X
tan 72 -
By substituting Eq. (5-92) into Eq. (5-90) and rearraﬁging, we have
(A - cos @) x2 4+ gin ¢xy ~ (1 - cos ¢) =0 (5-93) .

In the velocity coordinates system Dﬁ& , this equation is the equation of an

hyperbola having the asymptotes
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Fig. 5-7. The Hyperbola which is the Locus of the Terminus
of the Deorbit Velocity for Entry at Given Position

(5-94)
y=_(}\TCOSQ)X
sin ¢

Hence, the first asymptote is the y-axis.- For a geometric interpretation of

the second asymptote, we consider the triangle ODE , and evaluate the tangent
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of the angle ODE . Let E' be the projection of the point E on the axis

0D . Then
_EE' _ R sin ¢
tan X ODE = ;o5 = T, - R cos §
Hence,
tan X.0DE = —Sin ¢ (5-95)

A - cos ¢

Thus, the second asymptote of the hyperbola given by Eq. (5-93) is the line DE
Equation (5-93) shows that, for the descent trajectory initiated from the

point D , to intersect to the atmosphere at a prescribed position E defined

—

Y2
—r

that hyperbola. When the terminus of the wvector - u, moves on that hyperbola,

by the range angle ¢ , the terminus of the deorbit wvelocity must be on

it generates a family of descent trajectories. Using the deorbit flight path

angle vy, as the parameter for this family, we can calculate the elements of

the descent orbit in terms of A , ¢ and Yy o Let

z = tan Yq (5-96)
Then, 3f x and y are the components of the deorbit velocify EZ in the
Dxy axis system,

Yy = xz . (59N
By substituting into Eq. (5-93) we have
2
[(A\ -~ cos &) + 2 sian ¢] ¥ =1 - cos ¢

Hence,

(A - cos ¢) + z sin ¢

.and .
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y =2z //( LL - gos ¢) (5-99)

A -cos ¢) +z sin ¢

The deorbit speed can be obtained by directly solving Eq. (5-90).

2
B (L-cos )@ +27) -
Yo T ¢/£K——-cos )+ z sin ¢ (5-100)

For the other elements of -the descent trajectory, we only need to evaluate the
entry speed u, in terms of A , ¢ and =z = tan Yo and then substitute

into the equations derived in section 5-2. From Eq. (5-7) we obtain

- {1l - cos &) 22 + 2(A - 1) sin ¢2 + 2{A - 1)(A — cos 4) + (1 - cos ¢)
e (A, ~ cos ¢) + z sin ¢

u
{5-101)

The impulsive change in the velocity Eﬁ s and its direction & , are given
by Egs. (5-11) and (5-12), respectively, with the initial speed given by
Eq. (5-9) and the initial flight path angle by Eq. (5-10).

The entry flight path angle is given by Eq. (5-17). We have

V// (1 - cos ¢)

cos Y_ = A 3 - -

e (1-cos ¢) 2°+ 20 -~ 1) sin ¢z + 2(A - L)(A - cos $) + (1 - cos ¢)
‘ (5-102)

The dimensionless semimajor axis of the descent orbit is given by Eq. (5-13),

written with the value of u, given by Eq. (5-101) as

o, = Al - cos ¢) + 2 sin ¢] 5 (5-103)
(2X = 1) —cos ¢ + 2 sin ¢2 — (1 — cos $)'z

The eccentricity of the descent oxbit is given by Eq. (5-14).

J&(l - cos'¢) 22 + 2¢x - 1) sin ¢z + (A - 1)2
€2 < [(A - cos ¢) + 2 sin ¢] (5-104)

-

The longitude of periapsis of the descent orbit is given by Eq. (5-23) where
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now the angle n is given in terms of the selected variables as

tan m = (?\(i ;)?:Sz¢;;; ) (5-105)
The polar equation of the entry orbit is
Ps
TEITH e,cos(8 - w) ?5-106@*
where e, is given by Eq. (5-104) and
P2 A(1l - cos ¢) (5-107)

R (A -cos ¢) +z sin ¢

The position of entry E is, of course, specified by the prescribed range

angle ¢

5-7. MINIMUM IMPULSE FOR ENTRY AT GIVEN POSITION

We have seen in the preceding section that, for am emtry at a prescribed
position, initiating from a given point D on the initial orbit, there exists
a family of descent trajectories which is a function of the deorbit flight path
angle Yy - These trajectories are such that the terminus of the deorbit veloc-
—_
o

we shall select from among the descent trajectories in this family the one that

ity is on a branch of hyperbola defined by Eq. (5-93). In this section,
results in 2 minimum characteristic velocity Au . That particular trajector;
is called the optimal deorbit trajectory for a prescribed entry position.

In the-hodograph space (Fig. 5~8), consider the hyperbola which is the
_locus of the terminus of E; for a given entry position defiﬁed by the range
angle ¢ - In this hodograph space, the initial velocity EI is prescrdibed.
Its projecéions 'Xl and Yy qn the axis system Dxy are given by Eq. (5-68).

As for the problem of minimum impulse fgr entry at a given angle solved

in section 5-5, we obtain the minimum of “Au by finding the shortest distance

from the point with coordinates (xl,, yl) to the hyperbola defined by Eq. (5-93).
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Fig. 5-8. Optimal Velocity Triangle for
Entry at Given Position

-
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Again, let superscript (%) denote the optimal elements. The point

with coordinates (x* , y*) on the hyperbola giving the terminus of the op-
—_ %
Y2

passes through the point (x1 » yl) . We write the equation of this hyper-

timal deorbit velocity is the point where the normal to the hyperbola

bola
£(x,y) = (A - cos ¢) %% + sin dxy - (1 -cos ¢) =0 (5-108)

The componments of the mormal to the hyperbola are given by

g£-= 2(A, —cos ¢) x+sin b ¥y

(5-109)
i sin ¢ x
oy
Requiring that this normal be collinear to the vector T gives
X=X y-vy
1 1 (5-110)

20 —cos d) x+ sin ¢ ¥y = sin ¢ x

% x
_The set of equations (5~-108) and (5-110) gives the coordinmates (x , ¥y )
. — %
components of the optimal deorhit velocity u, . It is convenient to use

the variable 2z as defined by Eq. (5-96). Then the components of the vector

.

u, are given in terms of 2z by Egs. (5-98) and (5-99). - Upon substituting
these equations into Eq. (5-110) and rearranging we have a quartic equation in-
b4

B z4 + B 23 + B 22 + B

0 1 2 3%+ B

A

n
(=

(5-111)

where the coefficients Bi are

By = sin2¢(1 - cos ¢)

- . - ; 2.3
Bl =4 gin (1 ~ cos ¢)(A - cos ¢) - yysin i
32 =.2(1 - cos ¢)(212 -4} cozg ¢ + 3 cos?¢ -1

+ 2xlylsiﬁ3¢ - Syi(k - cos ¢) sin2¢ (5-112)
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B3 £ - 4 sin ¢{1 - cos $)(A - cos §) - xisin3¢ + éxlyl(l - cos ¢) sin2¢
- Byi(l - cos ¢)2 sin ¢
- a2 2 . 2 2 .
34 = sin"¢(1 - cos ¢) - xl(l~- cos ) sin ¢ + hxlyl(l - cos ¢) sin ¢

- 4y§(l - cos ¢)3

Hence, the optimal deorbit flight path angle is. obtained by solwving a
quartic equation. In general, this equation gives four roots corresponding to
four normals drawn from the point (xl . yl) to the hyperbola given by
Eq. (5-93). One of these roots corresponds to the minimum of Au .

The elements of the optimal deorbit trajectory are obtained by using the
value of z computed from the quartic equation (5-111) in the general equations
for descending trajectory derived in the previous section.

By using, instead of =z , the components x* and y* of the optimal
deorbit velocity G;* as coﬁputed from Eqs. (5-98) and (5-99), we also can col-

culate the elements of the descending trajectory using the alternate formulas,

Eqs. (5-84) - (5-89).
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CHAPTER 6

THE ENTRY EQUATTONS

6-1. EINTRODUGTION

Im--Chapter 5-we -considered-the trajectory of the vehicle from the de-
orbit ﬁosition D to the entry position E . This point E is assumed to
be at the top of the sensible atmosphere. Thus, until now, the trajectory
has been analyzed for flight in a vacuum. From here on, this text will treat
the portion of -the flight path beyond the point E , referred to as the
entry trajectory.

Along the entry trajectory, the aerodynamic force is no longer negli-
gible. In fact, it plays an important role as a braking force to reduce the
-speed of the vehicle to the point such that the terminal phase of the flight
before landing can be conducted as a vertical free fall using a system of
parachutes for soft landing for vehicles with no 1lift capability, or as a
gliding flight at low speed as an ordinary airplane for wehicles which can

generate aerodynamic 1ift.

6-2. ENERGY DISCUSSION OF THE TRAJECTORY IN PHASﬁ SPACE

The equations of motion of a vehicle flying in a Newtonian gravitational
force field and subject to thrust and aerodynamic-force were derived in
Chapter 2. ‘We shall assume that along the fundamental part of the entry tra-
jectory where the dgceleration undergoes rapid change, the engiﬁe is shut off
at all tiﬁe. Hénce, with T =0 , we have the planar equations of motion in

the plane of a great circlé (Fig. 6-1).
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Fig. 6-1. Geometry of the Entry Trajectory

av DSCDVZ
ST T g(r) sin vy
2

pSC.V 2

ay L _v. -
V 3¢ om [g(r) -1 cos v ) (6~-1)
!
%%-= V sin vy

where V is the speed of the vehicle, vy the flight path angle measured

from the local horizontal, positively up, and r the radidl distance from



the center of the planet. The atmospheric density p and the acceleration

of gravity g are, in general, functions of the distance r .
p=p{x) , g=g() (6-2)

The reference area 35 has some conventional value, used to evaluate the

1ift coefficient CL and the drag coefficient C In general, these co-

D *
efficients are functions of the angle of attack ¢ , the Mach number M ,

and the Reynolds number R,

CL = CL(a . M, Re)
(6-3)
CD = CD(a s, M, Re)

In hypersonic flight however, it is generally assumed that CL and CD are
functions'of the angle of attack only.
For a given vehicle, if the initial conditions are prescribed, x = L

V= VO , and v = Yy 2t t=0 , and 1f a flight program ig prescribed by
specifying the angle of attack function o = aft) -, then with Eqs. (6-2)
and (6-3), the system of equations (6-1) can be integrated, at least numeri-
cally, giving the time histories of the variables r(t) , V(t) , and
vy(t) . Iz the following we shall mainly intere;t ourselves in the flight
program of constant ¢ . 1In this case the coefficients CL and CD in
Egs. (6-1) are constants.

1t is comvenient gg write the Eqs. (6-1) gn nondimensional form. TFor
this purpose, let T, be a reference radial distance. 'Frequeﬁtly , is
taken as the r;dius of the planet, assumed homogeneous and spherical, but for

reasons which shall be clearly justified later, we shall take t, as the

initial radial distance. We define the d&mensionless variables

v



(6-4)

where u is the dimensionless kinetie energy, and, for a Newtonian force
field, =z 'is the negative of the potential energy. The acceleration of
gravity is t£en o o ) .
r0 2 .
g = gy (6-5)
where = is the acceleration of the gravity at the reference distance.

With r, as the initial distance, the initial value of =z is 2z, =1 .

0

Using =z as the new independent variable, we eliminate the time and

rewrite Eqs. (6-1) as

du _ rOpSCDu .
dz 2 .
mz sin v
(6-6)
dz 2m22 2u
where
¢ = cos v (6-7)

The system of Egs. (6-6) constitutes the exact equations_for flight in a
Newtonian force field, subject to éerodynamic forces. Its integration re-
quires specifying the law of variation for the atmospheric demsity, op ;
as a functidn of the independent wvariable =z .

The system of Eqs. (6~6) is exact. Hence, for flight in a vacuum,
that is_wﬁen B'?-O ; we egpéct to obtainvthe tfajgctor& in the form of.a -
Kepleéiaﬁ orbit. Putting p =0 -in £he Eqs. (6-5), we ﬁave the system-

* du
== =1
= - " (6-8)

‘de _ L L
dz (z Zu) ¢



Integrating the first equation yields the vis viva integral
u=12+0C (6-9)

where C i1s a constant representing the total energy. Substituting this

relation into the second equation (6-8) and integrating gives

g = %E =K (6-10)

where K 1s a new constant of integration.

The definitions (6-4) and (6-7) of u , 2z , and ¢ show that

o = rV cos ¥ (6-11)
/ZgOrDB
Hence, Eq. (6-10) is a statement of the conservation of angular momentum for
flight in a vacuum.
The Kepleriam trajectory can be conveniently visualized in the cylindri-

cal coordinate space (2 , ¢ , u) (Fig. 6-2). The trajectory is in the plane

g = constant. In this plane, it is a segment of a straight line representing
the equation (6-9). This line makes an angle of 45° with the u axis

(Fig. 6-3).
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By the definitions (6-4) of u and =z , the trajectory lies in the posi-
tive (u , z) space. When C < 0 , it is an ellipse, and the radial dis-
tance is bounded. The variable =z oscillates between a minimum z, cor-
responding to the apogee distance, and a maximum zp corresponding to the
perigee distance. On the other hand, the kinetic energy is a minimum where
the radial distance is maximum, and it is a maximum for a minimum of r .
When € =0 , the trajectory is a parabola, and since z, = 0 , the maxi-
" mum distance is infinidty. At the point at infinity, the kinetic emergy of
the gystem is zero. When C > Q0 , the trajectory is a hyperbola. Bui, at
the point at infinity where the potential energy is zero, there is a resid-
ual kinetic energy equal to C .

When p # 0 , the total energy and the angular momentum are no longer
congtant. 5till, it is possible to discuss the variations of these quan-
tities and have some insight into the behavior of the trajectory by consider-
ing the phase épace (z , o0, un .

. Let & be the variable total energy when aerodynamic force is en-

counteraed. We have

E=u-z (6-12)

From the first equation {6-6)
r.pSC u
& _ 0 b (6-13)
dz 2,
mz sin v

From the last equation (6-1), it follows that
1f ;in vy>0 , r dincreases and =z decreasgs.
If siny <0 , r decreases and z increases.
In both cases the total emnergy, £ , of the system is decreasing, as

seen in Eq. (6-13). Hence, £ is a convenient dimensionless independent



variable.
On the other hand, the definition (6-10) of the angular momentum,
o , shows that

Yode . b du_ ¢/u

Z z dz Y dz Zz

With the aid of the equations (6-6) we have

(= 1=N

d_0_=r0—050£+(—@‘_—1)¢+ﬂ§_(£_ l)¢
dz 2mz3 22 2zva 2m2331n ¥ z2 2z/u
Hence
T pS/E C
do _ "0 . D _
dz 2 3 \CL + tan Y) (6-14)
mz

If tan vy <0 , 2z increases. Thus, for the angular momentum to decrease,
the condition

C

L + tan v

C <0 (6-15)

‘must be‘satisfied. Hence, if high 1lift is developed, for example in the
case of a pull-up maneuver, the condition may be violated, and the angular
momentum can increase. On the other hand, if tan vy > 0 , =z decreases.
Then, decreasing angular momentum requires that

C

D
O F tan Y

> 0 - (6-16)

The condition is always satisfied for positive l1ift. But for large negative
1ift, the angular momentum can increase. '

Thus, we have obtained some very general conclusions for the variations
of the total ené?gy and of the angular momentum of the dynamical system rep-
resenting éhe motion of the vehicle without regard to a specific law of vari-

ation for the -atmospheric density. These criteria are very useful for the
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qualitative discussion of the asymptotic behavior of the dynamical system
represented by the point M in the phase space (Fig. 6-2). For example, if
we consider the trajectory of a satellite starting out at wvery high altitude,
with an initially elliptic orbit, and subject to aerodynamic force besides
the gravitational force, them first we see that, in the phase space (z , 0 ,
u) , the point M is constantly on a ruled surface generated by the equa~-
tions

o = g(t) 6-17)
-17

u=z + £(t)
with &(t) being a decreasing function of the time t . Let R be the
radius of the planet. By the physical constraint r > R , in the phase

space of Fig, (6-2), both z, and z_ tend to rolR with

wl H o
o

zZ <
a ™~

Also, since u > 0 , the limit of & is
E(to) > E(t) > - max z,

Furthermore, for a vehicle with no lift capability, putting CL =0 and di-

viding Eq. (6-13) by Eq. (6-14), gives

aE _ 2z/u
do oS
which is, using definition (6-10),
' 48 _ 2u -
do © o . (6-18)

This shows that the angular momentum o(t) is also decreaéiné.

-
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6-3. THE FUNDAMENTAL EQUATIONS

The system of nonlinear differential equations (6-6) can be integrated
for any specified vehicle from a prescribed initial condition, once the law
of variation of the atmospheric density is known. We shall assume an expo-

nential atmosphere of the form

p=npe P (6-19)

*

where h is the altitude above the surface of the planet
h=r-R (6-20)

with R being the radius of the planet. B is the reciprocal of the scale
height and Pq is the atmospheric density at the surface. Using an average
value for B in the altitude range of interest, we can treat it as essentially
a constant.

’

We define the drag parameter of the vehicle as

ropSSeBR
' B am % (6-21)
where
A= Bro (6-22)

~

Although X dis a function of the initial distaunce, for all practical pur—

poses, when one considers an entry trajectory from outer space, T, is

usually fixed at some arbitrary level where the aerodynamic force begins to
take effect. F9r the Earth's atmosphere A has a mean value of approximately
900 in lower reaches of the atmosphere where aerodynamic force is effective.
For the atmospheres at the surface of other planets, from data such as is
presented in References 1, 2, and 3, approximate megn values of several quén-

tities of interest are given in the Table below
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Planet R ="1. Gases g™t Y
o - l!’ H
Venus 0.97 002 {95%) 2 -5=x 10" ft. 500 - 900
Nz {57) 6 - 15 km. .
. o 4
Earth 1.00 Nz (78%) 2.35 x 10" ft, 900
02 (21%) 7.1 km.
o 4
Mars 0.57 CO2 {>80%) 3.5 x 10" fet. v 350
Nz (<20%) 10.6 km.
. . A
Jupiter 11.00 H, (>50%) 8 x 10" ft. ? n 3000 2
He ? 25 km., %

Table 6-1. Characteristics of the Atmospheres
of Some Planets

It is convenient for a discussion of entry trajectories valid for a general

type of vehicle, to introduce a new dimensionless atmospheric mass density

1  such that
n = ke M (6-23)

The variable mn can be used to replace the altitude variable. Thus,

dn _ Adz -
ER (6~24)

Use of Egs. (6-21) - (6-24) transforms Eqs. (6~6) into

2( + 2)

"ag _
dn sin vy

(6-25)
an T TwmaGE D A ¢
This system is the fundamental system of equations for entry trajectories.

-

The system is exact in the sense that the equations are valid for f£light in
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a2 Newtonian force field.

The atmosphére is specified by prescribing the value of A (e.g., A = 900
for the Earth's atmosphere). The characteristics of the vehicle are specified
by the constant lift-to~drag ratio, CL/CD , and the drag parameter, KD K
For the integration of the entry equations, the variables Zy s Yy v and
Yo &t the initial time are given., Hence the equivalent initial conditions

for the fundamental system (6-25) are
=A
7y = i, Eg = up ~ i, ¢0 =gos Yy , Ny = KDe (6-26)

When the system (6-25) is integrated numerically, at each instant the value

of z is obtained in terms of the corresponding value of n from Eq. (6-23).
Since the flight path is in the sensible layer of the atmosphere, the value

of z 1is nearly unity. Hence, except for the case of a skipping trajectory
in which the véhicle is ejected into the vacuum after having negotiated a

turn inside the‘atmosphere, we can take z =1 din the system (6-25) and con-
sider the resulting equations as the exact equations for entry. Furthermore,
for all practical purposes, the initial value N9 > which is proportional to
the initial atmospheric density, can be taken as zero. Witb these assumptions,
and the Galue for A , we need only to specify the lift-to-drag ratio, CL/Cﬁ
for the computation of the trajectory for any pair of values (uo s YO) .

The results can be used for a éeueral type of vehicle. Tor any specified
entry vehicle, the characteristic value of the drag parameter' KD is used to
convert the valqe of the variable n into the corﬁesponding £flight altitude
through the definition of n , Eq. (6-23). This approach was first used by
Vinh and érace in Ref. 4, and is éeveloped in References 5 - 7. It leads to

a new theory for the entry trajectory Which:can be considered as an improve-~

ment of the well-known theory developed by Chapman.
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In subsequent chapters we shall present different well-established
theories for solving appfoximately the system of fundamental equations devel-
oped in this chapter. Chapter 7 will be concerned with Loh's second order
theory for reentry trajectories. Loh's theory is empirical but it is the
most accurate of all approximate analytical theories. In Chapter 10 we will
present the theory of Yaroshevskii which can be considered as a special
case of Chapman's theory. Chapman's theory will be the subject of Chapters
11 and 12. Finally, starting with Chapter 13 we shall develop a unified
theory which has all the advantages cof Chapman's theory in addition to am

improvement in the accuracy.
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CHAPTER 7

LOH'S SECOND-ORDER THEQRY FOR ENTRY TRAJECTORIES

7-1. INTRODUCTION
- In Chap%er 6, we derived the exact equations for entry at constant
lift~to~drag ratio. The set of fundamental equations of entry are not solv-

able analytically, even with the usual assumption considering the accelera-
tion of gravity constant. However, upon restricting the solution to a lim-
ited region of application, one can obtain several first-order approximate
analytical solutions. Each of these solutions is then valid for one type of
entry. On the other hand, Loh has derived a more general solutiom which
covers the entire range of lift-to-drag ratiocs and initial flight path angles
(Ref. 1). We shall refer to his solution as Loh's second-order solution.
Loh's theory is empirical, and is based on data from extensive numer—
ical integratioun of entry trajectories. Nevertheless, 1t proves to be very
accurate, even for trajectories with.varying lift-to-drag ratio (Ref. 2).

In formulating Loh's assumption, we consider the fundamental equations,

Egs. (6-25)
du _ _2u P
dn sin vy An
) (7-1)
d¢ | L _ E_{fl._ lﬁ )
dn C An2u =
D
where, as before,
2 r
= =1, v =0 = _3
AEBr, , us 2(801_0) ; 2T , ¢S cosy (7-2)

with T, the initial radial distance. The variasble n 1is proporticmnal to

the atmospheric density, and by Eqs. (6—21) and (6-23) of Chapter 6, is
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defined as
SC
4 ...__._D - — Y
Loh's first assumption is to take =z = 1 in the fundameatal equations,

Egqs. (7-1). Thus,

dn sin ¥ An
. (7-8)
d¢ _ L _ 1.1 _
dn CD ln(2u Do

Loh considered this system as the system of exact equations for entry, but,
as seen here, it is cobtained by neglecting the altitude as compared to the
reference radial distance. The flight path angle used by Loh is 8 which
is the negative of the flight path angle <y defined in this text.

Let

1

1
6=l -1 ¢ (7-5)

Hr

'Although_the right-hand side- of this equation is a function of the variables

n , u and ¢ , all varying with the time, Loch observed through extensive
numerical integration. for different types of entry trajectories, that the

term remains nearly constant for each trajectory. Therefore, he used the as-
sumption that G is constant for the purpose of integration with respect to
either n or vy . A possible interpretation of this phenomenon can be seen
by observing that the expression for G 1is the difference between the gravity
force and the centrifugal force along the normal to the flight path. TFor
curvilinear flight over a spherical earth, this difference remains mearly con-
stant. In keeping this term, these effects are retained in the solution,

with any resulting error from the assumption coming entirely from the fluctuation
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between the twe forces. Such fluctuation is small.

|
7-2. TUNIFIED SOLUTION FOR ENTRY

With G considered as constant, the second Eq. (7-4) is written

. .
4 _ L _ . (7-6)
dn CD

where, for constant lift-to—drag ratio, the right-~hand side of this equation
is constant. The integration is immediate,

C

cos Yy = ¢os Yy = (EL-- &{n ~ no) (7-7)
D

This equation can be rearranged to give the expression for the flight path
angle in terms of n and u . A

cos v, + (CL/CD) n(l - noln)

cos y = =] (7-8)
1+ 2 7@ = ny/my[@/2u) - 1]
To integrate the first equation (7-4), Eq. (7-6) is rewrittem as
ay _ L
- sin y Ex =—=-G (7-9)
n - CD

Then, with vy as the independent variable of integration, Eq. (7-4) is’

d_u+ 2u - . =g8in ¥y
dy [(CL/CD) - G] ln[(CL/CD) - G]

Using the solution (7-7) to rearrange the right-hand side of this equation

gives

gg_+ 2u - sin vy
dy [(CL/CD) - Gl Acos v - cos Yy +,n0[(CL/CD) - 9]}

.Since Ny = 0 , the final equation for u is

QE.- 2u - sin v 10
dY ¥ {(CL/CD) - G] }t(COS ‘YO - Cos -Y) (7 10)




Let
g = 2 (7-11)
and
= sin y _
£(y) = oS Y, - cos Y (7-12)
The equation for u is a non-homogeneous, linear equation:
du I _
ay PR =3 £(v) (7-13)

If we treat G as essentially constant, K dis a constant for constant 1lift-

to~drag ratio entry. Then Eq. (7-13) can be integrated:
u=2C e.-KY +:%-F(y) (%—14)
where C dis the constant of integration, and ¥(y) répresents the integral
Fv) = e X [ My ay (7-15)

The constant of integration C can be evalvated by using the initial condi-

tions
Y = YO » u = uo ] n= Tlo (7"'16)

It should be noted that, although K 1s treated essentially as a constant
for the purpose of integration, when the solution ig obtained expliecitly in
the form (7-14), both terms on the right-hand side of this solution are now
functions of u , v and n through the definitions (7-5) and (7-11) of

G and XK . Hence, in evaluating the constant of integraticn C , ome may
choose either to -consider X as a functionof u , y and n or as a con-

stant evaluated at some specific point along the trajectory. If C is



evaluated by considering K as varying, then

®yvp — K1) CKOYO - Ky)
2

u = u FIFG) - e Flyy] (7-17)

where

2

%o = W /o) = Gl [(L/zag) - 1T cos v,

(7-18)

The two equations (7-8) and (7-17) constitute Loh's unified solution for
entry. In gemeral, the function F(y) as given by the integral (7-15) cannot
be expressed in terms of elementary functions, but series solutions are avail-
able (Ref. 1). ‘The equations can be solved for any two of the three variables
u , ¥ and n in terms of the remaining one. TFrom the value of 1 , one
can recover the real altitude through the definition (7-3) written as

- Schs

- —£h
"= "ne

(7-19)

The drag parameter of the vehicle is involved only at this step. Hence, as
far as the relationship between the dimensionless kinetic emergy u and the
flight path angle <y is concerned, it is dependent on the value of the drag
is zero.

parameter only through the initial value Practically,

TIO T'IO
" Thus, the relationship between u and vy i1s completely independent of the
drag parameter. In this case the value K0 as defined by (7-18) should be
evaluated at some intermediate pecint of the trajectory other than the initiai

point to avoid the singularity caused by taking My = o .

7-3. SECOND-ORDER SOLUTION FOR ENfRY

In general, the unified solution as presented by Loh is too tedious to
use since the two governing equations, Eqs. (7-8) and (7-17) are transcenden-
tal in the variables u©w , v and n . But the second term in the expres-

sion (7-17) for u contains the factor 1/A , which is generally small.
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For the Earth, A = 900 , and according to Table 1 of Chapter 6, the values
of A for the planets Venus, Mars and Jupiter are 500 » 350 and 3000
respectively. Therefore, except for the cases where extreme accuracy at the
terminal phase of flight is desired or for the cases involving planetary at-
mospheres in which the values of ) are uﬁforeseeably small, one can omit
the term with the factor 1/A in the expression (7-17) for uw . 1In this
case, the solution becomes
cos v + (C /) n(l - /™)

cos y = T (7-20)
I+ 71 - no/n)[(I/ZU) - 1]

and

" 2(vy ~ 1)
18l = e /ey — G /20 - 1T ses v -2

Equatiogs (7-20) and (7-21) form the basic ;econd—order solution as derived
by Loh. From these two equations, any two of the three variables u s Y
and 1 can be determined in terms of the remaining one. The equations are
still transcendental in the variables. To ease the numerical computation,
whenever nO/n <<l , Eq. (7-20) can be approximated by

cos v, + (CL/CD) !

cos v = = (7-22)
1+ [(1/2w) - 1]
On the other hand, Eq. (7-21), when solved for n , gives
/N /2v) - 1] cos ¥ log(u/uo)
n = (7—23}

(CL/CD) log(u/uo) - 2(Y0 -Y)

Eliminating n between the last two equations yields

C ~1
ey XLy w1 (/20 = 1] _
Y = 'Yo - Z(CD) log(uo) fl -+ 2 [1 _ (COS YOICOS Y)]] (7 24)

This transcendental equation can be solved for Y in terms of u . Sub-

sequently, the corresponding value of n can be obtained from Eq. (7-23),



or more accurately from Eq. (7-20), rewritten as

€,

-1 = ( - )+l(l*n0)(—l 1
QD n Nyl = (cos v cos Y, B o ) cos ¥y

n
For nD]n <«<1l , the right hand side can be simplified. This gives approx-
imately the dimensionless atmospheric density n representing the variation
of the altitude
€, 1 1,1

n=nyt CE;ﬁ [(cos v — cos YO) + K{z;-- 1) cos vl (7-25)
Loh has shown that the second-order solution, as derived, is very accurate
compared with the exact numerical éolution (Ref. 1). However, it should be
noted that the exact equations as considered by Loh are the equations (7-4)
obtained by taking =z =1 . The theory is based on computational experience
showing that, during the process of integration, the term € is nearly con-
stant. This explains the accuracy of the theory. A physicél explanation of

this phenomenon will be given in the next section when we show how the second-

order solution is reduced to different first-order solutioms.

7-4. REDUCTION OF THE SECOND-ORDER SOLUTION TO FIRST-ORDER SOLUTIONS

Several authors have obtained first-order solutions for different cases
of entry trajectories. The procedures followed in deriving these solutions
are the same. TFirst, the type of entry trajectory is examined, and ther ap-
proximations are made based on physical reasoning, ;nd the fundamental gqﬁa—
tions for entry are simplified allowing simple integratioms to obtain the solu-
tion in closed form. ZFach of the solutions is then only valid for a speci-
fied type of entry trajectory. The second-order soluticm obtained by Loh is

a unified solution in the semse that it is valid for all types of eatry tra-

jectories. Hence, upon appropriate simplifications, it should be reducible
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to the diffevent types of entry solutions if the empirical observation made
by Loh is consistent with the physical entry phenomena.
The second-order solution derived by Loh as presented in the previous

section is reproduced here for convenience of discussion.

oS Y, + (CL/CD) n(l - ﬂofn)

cos y = =y (7-26)
L+ 270 = ng/m /2w - 1]
" 20vg = ¥)
log() = e 7y = (/A7) = 11 cos v (7-27)
An alternate expression is
oy - ALyt + Lo G20 =11 T
Y=Y "2 c, o8 u, A 11 - (cos yolcos )1

The solution has been derived based on the assumption that a combined gravity

and centrifugal term G 1g constaat. This & term is defined as

G

1,1
KEGEE - 1) cos ¥ (7-29)

As has been observed, this term represents the difference between the gravity
force and the centrifugal force along the normal to the flight path. We shall
derive the different first-order solutions from Loh's second-order solution

and at the same time try to justify his empirical assumption.

7-4.1. Gliding Entrv at Small Flight Path Angles

When the flight path angle is small, cos y = cos Yo = 1 . Thus,

Eq. (7-26) becomes, with Ny = )

C
1,1 L
TG - 1) = (‘é']‘)‘) n (7-30)

0r, solving for u

B 1
T o201+ )\(CL/CD) nJ

u (7-31)
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Now, Eq.{7-29) with cos:y = 1 can be written as

1,1 _ _
G - 1) = en (7-32)

By comparing the two Eqs. (7-30) and (7-32), we see that the nearly constant
term G dis, in this case, nearly equal to the constant lift-to—drag ratioc.
It also can be seen in Eq. (7-6) that, for gliding entry at small flight path
angles, ¢ = cos y is nearly unity and the right-hand side of this equation

is nearly zero. The condition
= - —=—(—==-1) cosy =0 (7-33)
D

is called the condition of equilibrium glide. That is, there is nearly
exact balancing among the 1lift force, the.gravitational force and the centrif-
ugal force along the flight path for v = 0 . This assumption was first
formulated by Sanger and Bredt in Ref. 3.

Now Eq. (7-28) is written as

g = ¥ (1/2)(c; /c,) log{u/uy)

cos Y - cos ¥, ~ {cos vy - cos YD) + (L/A)[(1/2u) - 1] cos v -

.

= %——) log(ﬁ-a) (5% -7t

%

- The left-hand side of this equation, for vy = Yo can be approximated by

‘YO_Y _ YO—Y . 1 . 1 -
)Sin'Y

cos Y — €S ¥y 9 sin<%{y + TO) sin %{YO - ) sin %{Y + Yo

On the other hand, for entry from near circular speed, 2u0 = 1 , and the
logarithm term on the right-hand side of Eq. (7-34) is approximated by
1
= - 1)
Uy . - Ly . _ 2w e 2 ot
10g(u0) = Jog 2u = - 1og(2u) = - 1 +. .. = 2u(.2_u 1)

2u
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With these approximations, Eq. (J-34) is reduced to the final result for the

small f£light path angle in the form

sin y = (7-35)

1
- A(c /)
Equations (7-31) and (7-35) form the first~order solution of Eggers, Allen
and Neice (Ref. 4) for gliding entry at small flight path angle. The deriva-
tion of Eq. (7-35) directly from the second-order solution is somewhat del-
icate because it involves the ratio of small quantities. A more direct way
is to use the first Eq. (7-4) with the second term on the right-hand side
neglected. This is equivalent to assuming that the component of the gravity
force on the tangent to the flight path is negligible compared to the drag

force. Then,

du Z2u

dn sin ¥y

Using the first-order solution (7-31) to evaluate the derivative du/dn
yields
2u A(CL/CD)

2
2u__ _ _ = - 2A(C./C) u
sin y 201 + A(C/C) n1? LD

Simplification gives the solution

1

siny = - A(C /) u

which is precisely Eq. (7-35).

7-4.2. Gliding Entry at Mediumn and Large Flight Path Angles

Whert the flight path angle is not small, we neglect the terms with co-
efficient 1/A in Loh's second-order solution. Then the Egs. (7-26) and

{7-27) are reduced to
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C
cos Y = cos Y, = Eiﬂ(n - no) {(7-36)
and
20y, -.v)
u__ 0 "7 -
u, expl (CL/CD) ! (7-37)

Equations (7-36) and (7-37) are the first-order soluticns of Eggers, Allen
and Neice (Ref. 4) and Lees (Ref. 5) for skip entry and gliding entry at
medium and large flight path angles.

This case corresponds to comsidering the term G as negligibly small.
Hence, Loh's assumption, the empirical assumption of considering G as nearly

constant, is essentially correct.

7-4.3. Ballistic Entry at Large Flight Path Angle

For ballistic entry, CL =) , This, along with neglecting the term

with coefficient 1/A in Eq. (7-26), gives

cos y = cos Y, (7-38}

Since the flight path angle is nearly constant, the trajectory is essentially
a spiral in the plane of the great circle. If we keep the term 1/} in

Eq. (7-26) to retain the small variation in the flight path angle, then

1 1
——(n - nO)GEE - 1) (7-39)

COS Y — COS Yy = - o

Now Eq. (7-27), with the constant term cos ¥y as unity, is

I i SN -
2(70 -v) = - e log (uo)(Zu 1) (7-40)

The ratio of the last two equations yields

i u .,
1og(u ) =

(n - no) 0 cos Y ~ cos Y, sim Y

The last step in approximating the equation above is accomplished by using
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Y ® Yy 2s done previously. Hence, the expression for the velocity is

2(n - no)

0 = exp] gin v 1 (7-41)

L‘.,C‘»

Equations (7-38) and (7-41) form the first-order solution of Gazley (Ref. 6),
Allen and Eggers (Ref. 7) and Chapman (Ref. 8) for ballistic entry at large
flight path angles. Since they are here derived from Loh's second-order solu—
tion, they involve his assumed nearly constant G , the combined gravity

and centrifugal force. Let us examine the validity of this conjecture of

Loh. Comparing the two equations (7-29) and (7-39) we see that

cos v(cos Yo ~ cos )

6= (n ~ ny) (7-42)

Hence, except along the initial portion of the trajectory, this term can be

considered as small if vy = v In fact, for the direct derivation of the

0o °

first—order solution for ballistic entry we can put GL =0 , G=0 in the

second Eq. (7-4) and have upon integration

cos Yy = ¢S Y,
Next, using the first Eq. (7-4), omitting the term 1/X and integrating by
considering sin y as coanstant, we have

2(n - "0)

s expl— . :
0 pl sin vy ! .

c-‘lc‘-

7-4.4. GSkip Entry at Large Flight Path Angles

Along a skip trajectory, the vehicle enter the atmosphere, negotiates
a turn in the vertical plane and returns to the vacuum. Hence, if the flight
continues under the action of the gravity, each portion of atmospheric flight
'-is joined to the next by a ballistic arc. The original solution was developed

by Eggers, Allen and Neice (Ref. 4) with the assumption that, in the turning
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process, the aerodynamic lift is the predominani force and the gravity force
can be neglected. While the original derivation considers a flat Earth
model, we can retain the curvature of the Earth in the combined Loh's &

term and set it equal to zero compared to the lift term. That is, the second
Eq. (7-4) now becomes

c

d¢ _ -
i (7-43)

P
Ea

Integration gives the solution

CL
cos ¥ - cos Y, = (E—) {n - no) (7-44)
D

This equation can also be obtained from Loh's second-order solution, Eq. (7-26)
by neglecting the term € in it. Using the same assumption in Eq. (7-27)

we have for the speed

- exp [~
(CL/CD)

ug (7-45}
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CHAPTER 8

ANALYSTS OF FIRST-ORDER PLANETARY ENTRY SOLUTIONS

8-1. INTRODUCTION

In the preceding chapter, we have presented Loh's second-order solu-
tion. From the‘second—order solution we have derived several first-order solu-
tions of sPecia} interest, and at the same time we have giveq an explanation
of Loh's empirical formulation.

To help in the understanding of the physical phencmena encountered by
a vehicle during its descent through a planetary atmosphere, in this chapter
we shall rederive these first-order solutioms by making, separately for each
case, the necessary physical assumptions. Each type of trajectory will be
analyzed in detail. In particular, we shall be concerned with the variatioas
during the entry of the altitude, the speed, and the acceleration of the
vehicle. Other physical quantities associated with the dynamic pressure over
the vehicle, and the heating phenomena will be analyzed in Chapter 9. The
study of the physical quantities associated with an entry trajectory is im-—
portant since not only the knowledge of £he variations of these quantities
is of great assistance in the preliminary planning of the design of a specif-
ic type of entry vehicle, but also it provides the basic information with
which one can construct new and accurate theories for amalyzing entry trajec—
tories.

For convenience, we recall the fundamental equations for entry trajec-

3

tories in a wvertical plane

(8-1)



where A = Bro is a constant and

us—%’—(,v ) , & Z cos v (8-2)

while Ty is the initial distance from the center of the planet and &g

is the acceleration of gravity at this reference level. The equations were
cbtained by assuming that, at each instant, r = ﬁ% +h= Ty s where h

is the flight altitude. The altitude is obtained through the variation of
the density of the atmosphere which is related to the dimensionless variable
n by the relation

565 _gn (8-3)

) 2mfB ¢

=
1

It is generally assumed, in first-order theory, that the component of
the gravity along the tangent to the flight path can be neglected compared
to the drag. This is equivalent to neglecting the second term on the right-

hand side of the first equation (8-1). Hence, we write it as

du _  2u _
dn  sin vy (8-4)

The second equation (8-1) is maintained in its gemeral form. We rewrite it

. with the meaning of each term

d L1
.o Loty (8-5)
/—---—.._-i..—-——-—\ 4 i,,,_..-——‘-—"""""""""‘-""-"“"’“‘\
1ift force ' grav- centrifugal force-
ity fozrce
Two quantities of interest along an entry trajectory are the distance

travelled arnd the deceleration. For the distance travelled, we have the -

equation

& .y (8-6)



where s 1is the arc length travelled since the initial time. On the other
hand, the equation for the speed V with the tangential compoment of the

gravity, g sin vy , neglected is

2
_dl = e p_‘s_(ilﬁ_ (8._7)
dt 2m
Hence,
) av P57 (8-8)
ds = - Zm
Using the definitions (8-2) and (8-3) for u and ©n , we have
d ,s v _ 1 _
du(ro) 2Aun (8-9)

This equation, upon integration, gives the distance travelled along the

flight path. The tangential deceleration is simply

4av

= -1 (8-10)
Using Eq. (8-7), in dimensionlesg form, we have
Z— = 2Aun (8-11)

0
Another quantity of interest is the time of flight. It is obtained by in-

tegrating Eq. (8~7). In dimensionless form, it is

/2g
d S0 L
_.( _— t) = - (8—12)
du T4 21nu3!2

The following sections discuss the integration of the equations of mo-
tion derived above under various approximations relative .to the nature of the

entry trajectories.

8-2. GLIDING ENTRY AT SMALL FLIGHT PATH ANGLES

The main assumption for thig type of entry trajectory is that the



flight path angle is small, that is
siny. 2y , cosy=1 (8-13)

If in Eq. (8-3) we consider the variation of ¢ = cos vy as mnegligibly small,
this leads to the assumption of equilibrium glide at small flight path angles

as first formulated by SHnger and Bredt (Ref. 1). We have

C
L 1,1
oG- D=0 (8-14)
D
Solved for u , this is
u 1 (8-15)

T 201 + (e Jc) ]

On the other hand, if u is used as the independent variable, the variation
3

in the altitude is given by

2
I 1 - (V/gyry)

= = (8-16)
ZA(CL/CD) u

2
Figure 8-1 gives the plot of 1/An versus V//goro for different wvalues
of the lift-to-drag ratio, CL/CD
The flight path angle is obtained from Eq. (8-4). We have, by taking

the derivative of Eq. (8-13) with respect to u

1

- (8-17)
A(CL]CD) u

sin v =

From Eq. (8-9), we have for the distance travelled, using Eq. (8-16) for n.

_é_(f’._) = (_CIL/C_D.)__. (8.—18)
du o- (2u - 1)
Integrating from the initial wvalue U, gives
5 — s c
0 _1,"L 1~ 2u
- = 3{5) Log T—5 — (8-19)
Ty 2 CD 1 2u0
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Fig. 8-1. Gliding Entry at Small Flight Path Angle.
Velocity - Altitude Diagram for Different Values of Lift-to-Drag Ratio.
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We see that, for any prescribed final speed u,. , the distance travelled

£

s = S is maximized by using the maximum lift-to-drag ratio. Using the

final speed Vf = 0 , the total range is given by

c
CEL) Log %
0 D 1- (_Volgoro)

£

s
r

N

(8—201

The total range (Sf/ro) is plotted im ¥Fig. 8-2 in terms of the initial
speed VOIVgOrD for different wvalues of lift-to-drag ratio.
The time of f£light is obtained by integrating Eq. {8-12). We have,

first by substituting Eq. (8-16) into Eg. (8-12)

2 C
d 1
& T =) 172 (8-21)
v To D (2u ~ 1) u
Integrating from the initial wvalue uy gives
/g, C 1+ Y20, o _ 5=
)f' r—o(t - ty) = %‘-(“L) Log( __0) (1 2u) (8-22)
0 “ 1- /2y 1+ /2
For any prescribed final speed ug s the total time of flight tf -ty is
maximized by using the maximuwm lift-to-drag ratic. Using ue ¥ 0 , we have

the total flying time.

ng 1 CL 1+ VOIVgOrO
v T, e Tt TRl Lost — (8-23)
0 D 1- Vol 0%

Finally, from Zq. (8-11) we have the deceleration along the gliding
entry trajectory
2
) 1- (v /goro)

a _1-2u _
A (CLICD) CCL/CD)

(8-24)

The deceleration increases continuously along the descending trajec—

tory and it is minimized by using the maximum 1ift-to-drag ratio.
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The first-order solution of this section is known as the first-order

solution of Eggers, Allen and Neice (Ref. 2).

8~3. GLIDING ENTRY AT MEDIUM AND LARGE FLIGHT PATH ANGLES

When the flight path angle is not small, the comdition of equiligrium
glide is no longer maintained. . On the right-hand side of Eq. (8-5) the lift
force is predominant while the difference between the centrifugal force aﬁd
. the gravity force remaing small. Hence, we have the simplified equaFion

C
%‘E = -k (8-25)
n by

and upon integrating from the initial time

C
cos Y - cos Y, = GEL)(n - no) (8~-26)
D
If we write Eq. (8-25)
. dy ‘L
- sin Y 3= G
D

and combine this equation with Eq. (8-4) to eliminmate n , we have

C

dy _ _ 1, 1L _
u 2(CD) (8-27)
which intregrates to
2(vy - 1)
1 0
— = expl——7<"1] (8-28)
Uy (CL/QD)

Equations (8-26) and (8-28) constitute the first-order solution of Lees for
gliding entry at medium positive lift-to-drag ratio and medium flight path
angle (Ref. 3).

Using Eq. (8-11), with the solution (8-26) for n and (8-28) for u

we have for the deceleration, by taking Ny = 0



a 2hu, 20y = 1)
ES-= ?E;7E;T{C°S Y - cos yo) exPI_TE£7E£S—i (8-29)

Since, by this expression, "a" is a function of v alone, the maximum decel-

eration occurs at a value of <y obtained by solving the equation da/dy =0 .

We have
1%
5{) sin y = cos vy, - cos ¥ {8-30)
2 Ch 0
This equation can be written as a quadratic equatiom in tan-% ’
(1 +cosv.) ¢t 2y (E;) tan L - {1 -c¢ Y=0 (8-31)
Yo/ tan 7 g/ tan g °% Yo/ =

D
The equation has two roots, one positive and one negative. For a descending

trajectory, we take the negative root

c c, 2
Y 1 L L in” _
tan 5 5(L + cos YO)[CD J/(CD) 4+ 4 sin 70] (8-32)

Using this critical value for <y in Eqs. (8-28) and (8-29), we have the cor-
responding speed and the maximum deceleration. The altitude at which the
maximum deceleration occurs is given by Eq. (8-26) with ¥y as given by

Eq. (8-32). Let subscript (%) denote the condition at the point of maxi-

mum deceleration. We have

C C
L . = R 0 PN
(C ) (n, - no) = cos y, - cos Y, = Z(C ) sin vy,
D D
Therefore
Y
b = tani'—
* 0 2 Ta
14 tan™ —
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From Eq. (8-31), we have

Y
1 + cos YO) tan -

N, = Ny = - Yo (8-33)
2+ (CL/CD) tan o

Finally, using the solution (8-32), we have explicitly for the critical alti-

tude where the maximum deceleratiom occurs, in terms of the lift-to-drag
C

ratio (ELD , and the initial flight path angle YO R
D

,f(cL/cD)z + 4 gin? Yo = (CL/CD)

n, =n, +
* 0 - z r—l
4+ 16 /C )/ (L + cos v,)1I(C/Cp) (G, /C)% + 4 sin? v ]
(8-34)
When
2
4 sin Yo
3 <1
(c /)
the square root can be approximated by
CL 2 sin2 Yo
J € /e + 4 sin® vy = G+ 3
D {c_/c)
L°D
The expression for mn, becomes
-
2 sin2 EQ
'n* =n. ¥+ (8“"35)
0 (CL/CD)
In this case, the critical flight path angle, as given by Eq. (8-32), becomes
- .
.20
Y 2 sin 5 (8-36)
tan 5~ = — 5 7N -3
2 {CL/CD)

If the flight path angle is not too large, we have the approximate relation

2
Y

L GO (837

In this case, we. obtain from .Eq. (8-28) the critical speed where maximm de-

celeration occurs
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y %
* 0
=— = exp(—F) (8-38)
v, " =2k e,
The maximum deceleration is simply
2
a, . Auoyo . 270

B ey TIETe) o

The solution obtained by Lees applies to circular speed entry. For
supercircular speed entry, it has been generalized by Ting (Ref. 4). 1In this
case, the second term on the right-hand side of Eq. (8-5) is ﬁot negligible
since for large values of u , the difference [(1/2u) - 1] is not small.

Ting used the approximation

1 ~ L _
(56'- 1 ¢ 2u 1
0
Then, we have the equation
a _ % 1,1

Upon integrating and using the initial conditions, we have
&y, 1,1 n
cos y ~ €os Yy = (E')(ﬂ - no) - - 1) Log o (8-41)
D 0 0

For small flight path angles, we have Ting's first-order solution for entry

at supercircular speed

c i/2
- 2 o Lyen o 2,3 n_ -
Y= - [YO 2(0 ) (n no) + A(Zu 1) Log n ]' (8-42)
b 0 0
Next, we write Eq. (8-5)
&y _ % 1,1
- Sin d'ﬂ = C—D" -" 'R(E - 1) (8—43)

Combining this equation with Eq. (8~4) to eliminate n , we have
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du_ o Ay (5t

Considering the denominator on the right-hand side of this equation as con-

stant, we have, upon integrating

Yo =Y
Log %—-= a 0 (8-45)
0 Ll 2el-nyg
2°¢ An 2u

Equations (8-42) and (8-45) constitute Ting's solution for entry from super-—

circular speed (Ref. 4).

8-4. BALLISTIC ENTRY AT LARGE FLIGHT PATH ANGLES
For ballistic entry, GL =0 . The general assumption is that bal-

listic entry involves short range so that the assumpiion of f£lat Earth ap-

plies. In Eg. (8-53), if we neglect the centrifugal force, we have

dg _ 1

From this equation, because of the small factor 1/2X , it is seen that for
relatively steep trajectories, the dimensionless atmospheric density 0

will quickly become finite and the right-hand side can be put equal to zero.
Since the term is the gravity term, this is equivalent to neglecting the grav-
ity force compared with the drag force which is large during the fundamental
portion of a steep ballistic entry trajectory. We shall first conduct the
investigation under this assumption and later modify the solution to include

the effect of the gravitational force.

8-4.1. Analysis Neglecting Gravity

If gravity is neglected, the integration of Eq. (8-46), with the
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right-hand side put equal to zero, yields
cos Y = cos vy, (8-47)

For ballistic emtry, the flight path angle remains nearly comstant
and the trajectory is essentially a small portion of a spiral. Using this

solution, Egq. (8-4) can be integrated to give

2(n - no)
exp[——7"1] (8-48)

c‘.lﬁ

0 sin YO

Equations (8-47) and (8-48) constitute the first-order solution for
ballistic entry at large flight path angles as given by Gazley (Ref. 5),
Allen and Eggers (Ref. 6) and Chapman (Ref. 7).

Equation (8-48), with Ny 0 , can be written as

v, = o {EETO) (8-49)
It is seen that V decreases as the radius of a logarithmic spiral
(Fig. 8-3).
In the figure, the angle n 1is measured im radians. Let o be the

constant angle between V and the tangent to the spiral., We have
tan 0 = sin Yo < 0 {8-50)

V decreases more rapidly with the altitude for larger initial flight
path angles. On the other hand, by the definition (8-3) of n , for each
value of the alFitude, n is larger for larger values of the drag coeffi-
elent and smaller values of the wing loading Gmgofs) . Hence, the speed
decreases more rapidly with a larger drag coefficient and a smaller wing

loading. The deceleration is given by Eq. (8-11). We have, using the solu-

tion (8-48) for u ,
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Fig. 8-3, Variation of the Speed During
' Ballistic Entry
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-é—o- = 2}\1107] exp[—sﬁ-——] {83-51)

The maximum deceleration occuxrs at the altitude n, obtained by solving the

equation dafdn =0 .

i

n, = - 5 sin Yo (8-52)

From the definition (8-3) of 1n , this critical altitude is positive
if

SCDDS

g (8-53)

~ sin YOS

If this inequality is not satisfied, the deceleration continues to in-
crease and reaches a maximum at the altitude zero. In this case, the maxi-
mum deceleration is

a 2 -
* (n_ - ngy)

P ZKuOns expl ] (8-54)

0 sin v,

where ns is the value of n at sea level

SC.p
_ D's
s = "7np (8-55)
The corresponding value of u is
2(n, - ng)
ug = U, exp [————1 (8-56)

sin Yo

In the case where the strict inequality in (8-53) is satisfied the
maximum deceleration occurs at an altitude h* above the surface of the
planet. The edrresponding value of n dis given by Eq. (8-52). Using this
value in Eq. (8-48) with ny = 0 , we have

1.
Yo

® |
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Therefore

V= ——= 0.607 V, (8-57)

o1 |

Thus, the point on the entry trajectory where thg speed has decreased
to about 60.77 of its initial value is the point of maximum decelerationm.
The maximum value of the deceleration is obtained frem Eq. (8-51) with n,
as given by Eq. (8-52). We have

a Au,sin vy
%
Fa. 0 0 (8-58)

0 e

We see that the maximum deceleration is proportional to- the quantity
uosin Yo and is independent of the phiysical characteristics of the wehicle.

Figure 8-4 presemnts the velocity-altitude relationship, Eq. (8-49), for
different values of the initial flight path angle. The use of the dimension-
less quantity n 1is convenient since the diagram applies to any type of
vehicle regardless of its physical characteristics. For eaéh specified
vehicle, one can compute its sea level value ng by Eq. (8-53) and deduce
the speed ratio at this level. This alsc applies to any level by using
the corresponding value p .

Figure 8-5 presents the deceleration-altitude relationship, Eq. (8-51)
for different values of the initial flight path angle. It is convenient for

the plot to write this equation as

a

EKEEEE = Expﬁ_igl‘a (8-59)

sin YO

In this way, the diagram can be used for any type of entry vehicle

at any initial speed. The line of maximum deceleration is the hyperbola
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Fig. B8-4. Ballistic Entry at Large Flight Path Angle.
Velocity - Altitude-Diagram for Several Values of the Initial Angle.
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Ay_a . _I_ i
(n)(ngauo) = < = 0.36788 (8-60)

8-4.2. Analysis Including Gravity

The results in the previous section are obtained by neglecting the grav-
itational force. If the effect of gravitational force is retained, then for

ballistic entry, under the flat Earth assumption, the Egs. (8-1) are reduced

to

du _ 20 1
dn siny  An

(8-61)
d¢ ¢

Eﬁ-z - 2inu

The first of these equations is now integrated under the assumption that the
flight path angle is nearly constant and can be put equal to its initial

value. Hence we havé the linear equation

du _2u 1 (8-62)
dn sin Yo An
The general soluticn of this equation is
|
sin v
u=texp 2y & Odn+C] (8-63)
x FPYgin Yo T
where C 1s a constant of integration.
Using a new dimensionless atmospheric density o such -that
o= 20 (8-64)
sin vy,

we can write the solution (8-63) as, (Ref.8),

u=3 exp( - ) [Eila) + C] (8-65)
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where the expomential-integral function Ei(a) is defined as

A _ra t
Ei() =)~ & at : (8-66)

This integral function is tabulated in Ref. 9. The constant of integration
C in Eq. (8-65) is evaluated using the initial condition. It is seen from
this equation that the kinetic energy of the vehicle, or equivalently its

speed, passes through a maximum for a wvalue of o satisfying the equation
Bie) + ¢ = SR (8-67)

If the constant of integration C has been obtained from the initial condi-
tion, this equation can be solved for ¢« . Upon substituting back into

‘'Eq. (8-65) we have the value for the maximum kinetic energy
S
u =55 (8-68)

Now, using Eq. (8-11), we have for the deceleration

- ﬁi_v— = o exp(~ a)[Ei(a) + C] (8-69)
0 0

The deceleration has a maximum at the altitude where

Bia) + ¢ = SR (8-70)

Again, if the constant C has been evaluated, using the initial condi-
tion, this equation can be solved for « and, by the definition (8-64), for

n , vielding the altitude where maximum deceleration occurs. Combining the

v

last two equations, we have the maximum deceleration

a

* o
— — = (8_71)
-8goin v, e — 1
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where o is -obtained by solving Eq. (8-70). Maximum deceleration occurs at

a positive altitude if

exp (a_)
Ei(e ) + ¢ -——E— >0 (8-72)
S a -
(=3

where o is the value of o at sea level, that is
6 =8 __ _Ds (8-73)

If the vehicle's physical characteristics are such that inequality (8-72) is
not satisfied, then the deceleration monotonically increases during the bal-
listic entry and reaches its highest level at sea level, This maximum decel-
eration is given by

&
* -
- W = a_ exp(~ o)) [Ei(a ) + C] (8-74)

From Eq. (8-65) the constant of integration € 1is given by

C= Auo exp(ao) - Ei(ao) . (8-75)
where
= - _fﬁkl__ (8-76)
%0 sin Yo

On the other hand, a series expansion of the exponential function is

o n
Eifo) = g + Log o + X
n=1

(8-77)

n nl

3§

where Yy = 0.577215... iz the Euler constant. Hence, for entry from high

altitude, @, =0 and an approximate expression for C is

0

C= Auo(l + ao) RO (e Log 9, (8-78)
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8-5. SKIP ENTRY

A trajectory of interest for a lifting hypervelocity vehicle is the
skip trajectory. In the skipping phase; the vehicle enters the atmosphere,
negotiates a turn, and is ejected from the atmosphere. This type of maneuver
can bé used to achieve a change in the orbital plane. Ounly the maneuver at
constant lift-to-drag ratio in a vertical plame will be analyzed in this sec-
tion. The skip trajectory invelves a short longitudinal range. Hence the
flat Earth agssumption will be used., Furthermore, since the gravitational
force is, on the average, much smaller than the aerodynamie force, we can
neglect completely the gravitational force in the equations of motiom.

With these assumptions, we deduce from the general equations (8-1), the

equations of motion governing a skip trajectory.

du _ _2u
dn sin vy
£8-79)
a1
dn CD
The second equation can be integrated to give
L
cosS Yy — ¢os Y, = —(n - n.) (8-80)
0 CD 0

The vehicle exits at a final altitude level 10 equal to the initial

£

altitude Hence

TIO .
Ye = - v, (8-81)

This shows that,,for a skip maneuver at congtant angle of attack, the ejection
angle is equal to the absolute value of the entry amgle.
At the lowest point of a skip trajectory, Yy =0 . The minimum alti-

tude is then
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1 -~ cos YO

e (8-82)
(cL/cD)

For this altitude to be positive, it is necessary that

1 - cos.Yy . SCDpS

<
(BL/CD) 2mB

where the condition no 2 () has been assumed. We can write the condition as

2 Yo o 8PSy
sin —<

5 ZETE§E7§7- (8-83)

This provides the safety limit on the entry angle for a vehicle with speci-
fied 1ift capability and wing loading comndition.

To obtain the velocity distribution along a skip trajectory, we combine
the two equations (8-79):

c

&y __ 1. L -
du 2u(C ) (8-84)
D
Integration gives
2(vn — V)
u 0
Lo = expl—rrr—1 (8—-85)
U (CL/CD)
or in terms of V
vp = Y)
v 0
— = expl——7] (8-86)
VO (CL/CD
Hence, sinece Ye = " Yo the final velocity is
v 2y
7 = explgra) (8-87)
. 0 L' "D

Equations (8-80) and (8-86) constitute the first order solution for a skip

trajectory as originally derived by Eggers, Allen and Neice (Ref. 2).
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The distance travelled is given by Eq. (8-9) which, combined with

Eq. (8~-84), provides

d s 1
CEy s T (8-88)
&'z, T W Je) 7

Using the solution (8-80) for (CL/CD) n , we can write this equation

1

d s _ _
dy(ro) ~ Acos y -~ cos Y.) (8-89)
1
where the modified initial angle 1 ig defined by
‘L
cos y; = €os Yy - CESJ 1, (8-30)
The integration of Eq. (8-89) is simple. We have
Y ¥ Y.
s tang_»F ta—mmzi tanz—— tanz—l—
A =—=—/"—"Log ( X ¢ ) (8-91)
r sin vy, Y Y Y
¢ 1 tan LA tan = tan _Q_+ tan-—l
2 2 2 2

using Y with its positive argument.

If we consider the range x , then by the differential relation
dx = cos vy ds (8~92)

the equation to be integrated is

4 x, __ cosy )
dY(ro) " A(cos vy - cos Yi) (8-93)

Integration from the initlal distance Xy = 0 gives the solution

Y Y Y.
tan%+ 1::5!.1'1—:L tan—-o—- tan—]:-

2 2

A};——= Y = Y, + cot yilog ¢ 1 - -

0 teml—tan—£ tan—g-—i-tan——
2 2 2 2
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The tangential deceleration is given by Eq. (8-11), written with subscript
t , as
a

£ = 2)un (8-95)
)

It is informative to follow Miele, (Ref. 8), in considering also the normal

deceleration
Ly un (8-96)

Hence, the total deceleration is

—_——

¢, 2
= 1+ (gD 2w (8-97)
& D

a

The total deceleration and its two compoments are proportioral to un . All

pass through their respective maxima at the same time. We need only consider

t

a ~ Uy 2(70 -v)
EXE; = un = TE;7E;5(CDS Y — cos YO) eKPE—YE£7E;juJ g8—98)

The analytical solution for n and u , as well as the expression for the
deceleration have the same mathematical form as the expressions obtained by
Lees for gliding entry at medium and large flight path angles as derived in
section 8-3. Hence, the discussion for the maximum deceleration is identical
to that in section 8-3. The pertinent remark to be added here is that, from
Eq. (8~36), one can see that the peak deceleration occurs during the descend-
ing phase.

Furthermore, it should be noted that although for the two cases the re-
sulting differ;ntial equations are identical, hence, providing identical solu-

tions, the physical assumptions are-different. For the skip trajectory, if

we return to Eq. (8-5) with the different forces labelled, each of the gravity
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force and the centrifugal force is small compared to the 1lift force, since
it will require a relatively high lift-to-drag ratio to negotiate a skip
trajectory. On the other hand, for gliding flight at medium and large
flight path angles, one uses a moderate lift-to-drag ratio. The graviﬁy
-foree and the centrifugal force, considered separately, may have the same
order of magnitude as the 1ift force. The assumpticm used is that their
combined effect is negligible compared o the effect due to the 1ift, hence
the combined term may be put equal to zero. To retain this effect, instead
of putting it equal to zero, we may hold it constant for the integratiomn.
In doing so, we used the so-called Loh's assumption. Loh's theory for the

entry trajectory has been presented in Chapter 7.
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CHAPTER 9

AERODYNAMIC HEATTNG -

9~1. INTRODUCTION

The various first-order solutions developed in Chapter 8 are now employed
to analyze the thermal problems encountered in hypersonic flight. The study is
of fundamental interest to scientists and engineers involved in design of space
vehicles and in planning flight operations for a given mission. In space-flight,
achieving a maximum payload is always a factor of prime consideration. A rela-
tively important fraction of this payload is used in the protection and cooling
process during entry if the spacecraft is to be recovered. During entry the
total heat transferred to a spacecraft from the environment must be absorbed by
some coolant material or radiated away. But any heat absorbing material has
a maximum allowable temperature and therefore can accept only a given amount
of heat per unit weight. Hence, the total heat imput to the vehicle must be
kept as low as possible.

On the other hand, often the coolant material is simply the protective
wall of the vehicle exposed to the oncoming airstream, and it follows that the
selection of this material is dictated by the required structural strength and
_rigidity for the vehicle. An important criterion determining the required struc-
tural performance of the wehicle is the dynamic pressure encountered, which is
a function of the entry trajectory flown. In structural analy;is, it dis known
that the strength of the structure is a function of the stresses induced by the
temperature gradi;nts within the material. Since these temperature gradients
are proportiomnal to the time rate of heat input, the maximum time rate of heat
input is also a parameter of prime interest in the design of the vehicle. Hence,

three of the most important parameters of the entry trajectory are the total
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heat input along the trajectory, the maximum dynamic pressure, and the maximum
rate of aerodynamic heating encuntered.

This mechanism of heat flow into a vehicle during entry was investigated
at an early time by Allen and Eggers (Ref. 1). Since then, because of the many
possible combinations of speed regimes and aerodynamic shapes, numerous tech-
nical papers have been published. But the basic aspects of the aerodynamic heat-
ing during entry are still the same. Only numerical factors for different heat
transfer formulas and their validity in terms of the regime of the speed vary
with the different authors. Hence, in this chapter, we shall follow Allen and
Eggers (Ref. 1) in analyzing the three most important aspects of aerodynamic
heating during entry, namely:

1. The total heat imput, Q .

2. The time rate and maximum time rate of average heat input per unit

area, q, = dHav/dt and (qav) = (dHav/dt)max .

max

3. The time rate and maximum time rate of local stagnation region heat

input per unit area, q_ = dHS/dt and (g )

s’max (stldt)maX *

For easy reference, the notation introduced in this chapter is summarized

below:
A surface area , m2
CF equivalent skin-friction coefficient
CP specific heat of atmosphere at constant pressure, k cal/kgm °K
h convective heat transfer coefficient, k cal]mzsec-°K-
H convective heat transfer per unit area, k cal/m2
k fraetion of the heating rate at any point to the heating rate at
stagnation point
T K constant in stagnation point heat-transfer equation, k calfm3/25ec

. . . 2
q time rate of heat input.per unit area, k cal/m sec



E- dimensionless q
Q convective heat transferred, k ecal
R radius of curvature of body surface at stagnation point, m
T temperature , °K
Subscript
o conditions at reference, initial condition
av average values
f final conditions
L local conditions
e . exit conditions
T recovery conditionms
s stagnation conditions, also conditions at sea level
W wall condition

9-2. HEAT FLOW INTO THE VEHICLE

A vehicle entering a planetary atmosphere possesses a large amount of total
energy. When it encounters the atmosphere at high speed, a shock wave system
will form ahead of the part of the vehicle exposed to the oncoming airstream.
The resulting deceleration of the flow induces the formation of a high temper-
ature region in the inviscid flow between the shock system and the body. In ad-
dition, the velocity of the stream relative to the vehicle vanishes at the sur-
face {zero-slip condition), producing a further increase in thé static enthalpy
of the fluid. Therefore, if the temperature at a small distance from the body
is higher than thé surface temperature, thermal energy flows into the body.
The heat transfer is made up of two basic processes:

al. convective_ heating associated with the transport processes in the

boundary layer,
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b/ radiant heating associated both with the radiation from the high-
temperature gas to the vehicle, and the radiation away from the hot surface of
the vehicle.

To simplify the analysis, Allen and Eggers have assumed that:

1. Convectivé heat transfer predominates and radiation effects could be
ignored.

2. Real gas effects may be neglected.

3. Shock-wave boundary-layer interaction may be neglected.

4. Reynold's analogy is applicable.

5. The Prandtl number is unity.

Of the first assumption, the ;adiation effects that are neglected include
the radiation from the surface of the body and the radiation to the body from
the high-temperature disturbed air between the shock wave and the surface. The
first simplification is bas;d on the fact that the maximum allowable surface
temperature will be about the same for a variety of entry wvehicles, regardless
of shape, and as a consequence the radiation away from the surface will be ap-
proximately the same. Hence, neglecting this form of heat transfer should not
alter the qualitative effect of the relative heating investigated. The second
simplification, namely neglecting the radiative heat transfer from the disturbed
air, is purely for qualitative evaluation and is not applicable to very blunt
and heavy shapes at entry speeds about 3,000 m/sec .

In the second assumption, the neglect of real-gas effects in the flow,
particularly dissociation, on convective heat transfer is a go;d agsumption for
entry speeds up to 3,000 m/sec . TIn any case, it is a conservative assumption
resulting in heating rates higher than actual rates.

In the third assumption, it has been shown by Lees and Probstein (Ref. 2),
and-by Li-and Nagamatsu (Ref. 3), that shock-wave boundary-layer interaction

may significantly increase laminar skin-friction coefficients on a flat plate



at zero incidence and at Mach numbers in excess of about 10 . Hence, this as~
sumption should not be used for high entry speed of the order of 6,000 m/sec
or higher.

The assumptions of Reynold's analogy and constant Prandtl number taken as
unity also restricts the entry speed to the range of less than 3,000 m/sec .
It is for the purpose of simplifying the analysis that these assumptions were
made. Hence, they should be removed for an accurate quantitative evaluation of
the aerodynamic heating during entry of a specific vehicle. Nevertheless, the
quaiitative and explicit results obtained with these assumptions remain gener-
all} valid for an estimate of heat rransport phenomena as a function of the aero-
dypamic shape of the vehicle, and the type of entry trajectory.

On the basis of the foregoing assumptions, for large Mach numbers, the
difference between the loczl recovery temperature of the air, Tr s and the
wall temperature, TW ., can be expressed as

2
D _E; (9-1)

where the subscript & deqptes local conditions at a point on the body surface.
Now, by Reynold's analogy, the local heat-transfer coefficient hz » for

the assumed Prandt] mumber of unity, is '

_ 1 -
h2 =3 chcpgpgvg (9-2)

where CF is the local skin-friction coefficient based on conditions just out—
2‘ .

side the boundary layer.
The time rate of convective heat transfer from the air to any element of =

surface of the body may be expressed by

dg _ . N
= hg’(Tr T )

dt w L (9-3)
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Hence,

2
dH v
== =5—_C_ p,V,)) {9-4)
dt ACP F, P, I A8
Equation (9-4) can be integrated over the surface A of a body to yield

the time rate of heat input

g% = g—ls dA = % CFApV?’ (9-5)
A
where
v
_1 2oy _
Cp =% jA CFg,(p )G da 9-6)

“The parameter CF is termed the "equivalent skin-friction coefficient”
and will be assumed constant at & mean value for a particular vehicle (Refs. 4 ~ 5).

The time rate of average heat input per unit area may be obtained from

Eq. (9-5) as

.18 _ 1 _
TR (5-7)

Consider next the local convective heat transfer at a stagnation point in
the region of the foremost part of the body. According to Lees (Ref. 6), the

heating rate at any point on a body is a fraction

x =2 (9-8)

Is

of the heating rate qg at a stagnation point of radius of curvature R
« n oy ® .
a, = —E G (9-9)
V& 0 b
where « is a constant. The constant exponents n and m depend on the type
of boundary-layer flow. For laminar flow, we have n = 1/2 and under the as-
sumptions that the viscosity coefficient varies as the square root of the absolute

temperature and-that flow between the bow shock wave and the stagnation point is



incompressible we can use the value m = 3 (Ref. 1).

Hence, we shall consider

1

5 - 3
q =5E?% ¥y (9-10)
s VR Po fgoro

9-3. DIMENSIONLESS VARIABLES

With the eXpressions cobtained for different thermal quantities in terms
of the atmospheric density p and the speed V , we are now in a position teo
study the heating during entry using the first-order solutions derived in Chap-
ter 8. The dimensionless variables introduced for developing first-order solu-
tions are

2 SCD

ag P (9-11)

L

v

=
1]

where the subscript zerv denotes a reference condition, usually the initial com-
ditien.

It is convenient for the amalysis to write the thermal gquantities in terms
of these dimensionless variables. Using definitions (9-11) in Eq. {9-7), the

time rate of average heat input per unit area is

3
/2mB 2 -
Uy = [———SCD(gOrO) Cel a_, (9-12)
where
3
- 2
Gy =NU (9-13)

The expression for the time rate of local heat input per unit area,

s };/Scnpo] qq (9-14)
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where

b et

3
- 2
g_ =70 u (9-15)
s
Finally, the total heat input is obtained by integrating Eq. (9-3). It
is advantageous to integrate this equation with respect to u , through the
relation (8-12) of Chapter 8, written as

/28
d o /0yt _— (9-16)

du J/ To 2Bz ynu

=

Hence, we can write the equation for Q

AC
& __ _F, m. -
da = T 2 (scD) £0%0 : (9-17)
Integrating from u, to u
AcF m
Q=3 (scD) gofolip ~ W (5-18)

9~4, ENTRY OF A BALLISTIC VEHICLE
TFor ballistic entry, the solution obtained in Chapter 8 is

—] (9-19)

f.:ls:

= exp[ -
o sin vy,

Hence, with Ny = 0

ACF

S P _ 27 - _

sin YO
Since vy = (1/2) Vglgoro , the fraction of the initial kinetic energy

which is transferred to the vehicle in the form of heat can be written as

ACF

2n
SCD)[l - exp 1 (9-21)

sin YO

Qe __1
17~ 3¢

2%

For a relatively light wvehicle ng >> 1 and since sin Y0}<:0 , the

ratio is reduced to
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AC
Qf _ l(....._ﬁ_') (9-22)
7.2~ 2'%¢
7%y D

where subscript £ denotes the final condition.

To minimize the heat convected to the vehicle, the ratio of the skin-
friction coefficient CF to the total drag coefficient CD must be made as
small as possible. This ig achieved by a blunt body. 8ince a light vehicle
is subject to sharply decreasing speed due to the aerodynamic force, Eq. (9-22)
can also be obtained directly from Eq. (9-18) by taking wu_ =0 . For a rela-

i

tively dense ballistic wvehicle, n is small and

£
1. an L an o SCDDf
*P sin Yo sin Yo mf sin Yo -
Hence,
p AC
of _ _ __fA__F_..... (9-23)
1.2 2mB sin ¥
2™ 0

The skin~friction coefficient must be minimized to have the smallest total heat
transferred.
With the solution (9-19) the dimensionless time rate of average heat input

per unit area, Eq. (9-12), was found to be

3
- 2 3n
= S 11— -2
Yy Yo n exP(sin YO) (3-24)
The expression has a maximum value when
sin TO
= - -2
n 3 , (9-25)
s
This gives 3
u 5-sin Y }
~ .07 0 _
(qav)max N . 3e (9-26)

This is only possible with a vehicle suech that
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sin YO
nS > - ——‘j—" (9"'27)

where ng denotes the value of 1n at sea level, The speed at which the maxi-

mum average heating rate occurs is obtained by substituting (9-25) into (5-19)

(9-28)

The altitude y at which the maximum heating rate occurs is obtained by solving
Eq. (9-25) for v .

38C_p

s (9-29)

_ 1 ___D's _
YT 8 Log| 2m sin v,

If condition (9-27) is not satisfied, then the maximum heating rate occurs at

sea level,

3
_ 0l 3HS .
(O )max = U Ms P (GE) (9-30)

3.

Figure 9-1 plots the average heating rate, E;v/uoz versus the "altitude"
1/n for different values of the entry angle Yo - As in Chapter 8, the dia-
grams can be used for any type of ballistic entry vehicles. The line of maximum

heating rate is the hyperbola

1 qav 1
(;) (—375) =3 (9-31)
Yo

If we consider the dimensionless time rate of local heat input per unit

area, Eq. (9-15), then using the solution (9-19) for ballistic entry, we have

31
- _ .22 3n _ -
q, =y exp(sin TO) (9-32)
The expression has a maximum value when \\\\‘
sin YO
n=-——- (9-33)

6

-

This gives
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Fig. 9-1. Ballistic Entry At Large Flight Path Angle.
Average Heating Rate — Altitude Diagram for Several Values
of the Tnitial Angle. ’
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3 —
=y .2 ST -
(@ pax = Y% v~ " Go (9-34)

S max

The -altitude where the maximum héating rate occurs is given by
) (9-35)

where Py is the atmospheric density at sea level. The altitude is positive

if

sin Yo

SR (9-36)

If the inequality is not satisfied, the maximum heating rate occurs at sea level

and has the wvalue

o

1
_ E‘ 3ns .
(qs)max = Y g exP(sin Yo (9-37)

3/2 versus the altitude 1/n for dif-

Figure 9-2 plots the heating rate E;/uo
ferent values of the entry angle Yo The diagrams can be used for any type

of ballistic entry wvehicle. The 1ine of maximum heating rate is the curve

1,3 2 _ 1 _
u
0
9-5. ENTRY OF A GLIDE VEHICLE
For gliding entry, the solution obtained in Chapter 8 is
n = o= 2w (9-39)

ZBrO(CL/CD) u
The heat transfer to the vehicle is givenm by Eq. {(9-18) which, for ug = 0

is reduced to the,same expression (9-22) as given for a light ballistic entry

AN
A

vehicle.
. The time rate of average heat input per unit area is obtained by substitut-

ing solution (9-39) into Eq. (9-13)
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Fig. 9-2, Ballistic Eatry at Large Flight Path Angle.
Heating-Rate — Altitude Diagram for Several Values of the Initial.Ang;e.
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7 = 1 - 2w u1/2 (9-40)
av ZBrO(CL/CD)
It follows that the maximum average heat input rate occurs at
=t , —2 =-J—{ (9-41)
/&% 73
providing a maximum value
—_— . 1
(qav>max B (9-42)

3v6 B, (C/C)

If we consider the dimensionless time rate of local heat input per unit

area, Eq. (9-15), then using the solution (9-3%) for gliding eantry, we have

E- - {1 - 2u)1/2 u
VAT N R[N

The maximum time rate of leoecal heat input occeurs at

1 v=ﬁ _
U=y 3 (9-44)

/ 8o

(9-43)

>

providing a maximum value

(@) . = 1 (9-45)

S max ,—-—"——'—'—-‘—'
3, GBrO(CL/ cD)

9-6. ENTRY OF A SKIP VEHICLE

For skip entry, the solution obtained in Chapter 8 is

C .
€os Y - €os Yy = EL(n - no) (9-46)
b
for: the altitude and
2(vy - T
u_ 0 -
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for the speed. The flight path angle 7Y is used as the independent variable.

First, for the total heat input, the integral (9-18) is valid. Let v,

1
be the value of u at the first exit. The resulting heat flow after the
first skipping phase Ql is

ACF n
% =7 Ge) Bt P 7 e (9-48)

After a free flight in space, the vehicle reenters for another skipping phase

with entry speed Uy . TFor a spherical planet and atmosphere u, =u and

2 2 &

hence the total heat input at the end of the n skips is

L

ACF n n
Q=5 gty = (uy, -u ) - (9-49)

2 SCD 00 k=1 0k e

Since
u = s
e O
ACF m
if u0 is the initial value of u and uf is its final wvalue.

One may be led to believe that the final value ug is small. In general,

a. skipping trajectory is possible for high values of CL/CD coupled with a small
flight path angle vy . For comstant CL/CD the skipping phase may end at a

relatively high value of wu_ and the remaining portion of atmbsPheric flight

f
is effected as a glide trajectory at high lift-to-drag ratio. In any case,
since the integral (9-18) is valid for all types of entry trajectories, aand for
lifting entry u; = 0 , the resulting total heat input for a skip trajectory

is
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Q AC ‘

£f _1, F -
1 v2 h zcscD) (9-51)
2™

which is identical to the result obtained for light ballistic vehicle eniry,
Eq. (9-22), and also for gliding entry.
Now, using the Eqs. (9-46) and (9-47) in the expression (9-13) for the

time rate of average heat input per unit area, we have

(cos ¥ — cos v,) 3tY - ¥)
— 3/2 0 0
g __=1u exp[———=<1] (9-52)
av 0 (CL/CD) (c /cy)
The maximum heating rate occurs whenm &E;v/dy =0 .
CL
3{cos v - cos TO) + ) siny =0 (9-53)
CD )

Hence we have the critical value of ¥ where the maximum heating rate occurs

! 2 . 2
o X o (CL/CD) -~ J’(CL/CD) + 9 zin Yo
2 3(1 + cos YO)

(9-54)

In general, a skip trajectory is effected at hight lift-to-drag ratios amnd small
entry angles such that
9 sinzy0
5 << 1 (9-55)
(c /c)

sor that, in this case, the eritical vy can be evaluated from

Y
Y. 2 0
tan 2 - e gin T
2 (CL/CD) 2

(9-56)
In terms of the flight path angle, the time rate of local heat input per
unit area is
1/2
(cos v - cos v,) / 3{y, = v)
- 3/2 0 expl 0 ]
s~ Yo i/2 P Jcy)

(9-57)

[T

(¢, /Cp)

At the point of maximum heating vate
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. C
6(cos Yy - cos 70) + C—LO sin vy = 0 (9-58)
Cp
The corresponding value of vy is
/ 2 . 2
o X o (CL/CD) - ) (CL/CD) + 36 sin Yo (9-59)
2 6(1 + cos YO)
In the case where assumption (9-55) is valid, we have approximately
Y
l:__.—..._._ﬁ '2._..._ —
tan 2 (CLICD) sin” 3 (9-60)

1
'
3

The maximum values for a;v and E; are obtained by using the corresponding
eritical values of v . 1In the case where the small angle approximation is
used, we have explicitly,

3/2-2

() 00 ot > | (9-61)
q = exp —_
av’ max 2(CL/CD) (CL/CD)
and
3/2
- u Y Iy
(@) - 0 (9-62)

s'max /2(c joy) RRRCYCNS
9-7. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF HYPERVELOCITY VEHICLES
Any detailed aralysis of the performance would require variational theory
and hence is not within the stated goal of this work. Wevertheless, since some
of the performance criteria such as range, time of flight, speed and design
parameters, such as convective heat and heat rate, are obtained in explicit form,
it is possible to have some qualitative appraisal of the performance of a hyper-
velocity vehicle ﬁsing different entry modes. In the past, space vehiclgs were
designed for a specified entry mode. In the beginning, they wére all of the
ballistic entry type vehicles. A new generation of space vehicles has 1ifting

capability. Through attitude control the lift coefficient can be modulated in
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the ramge from CL =0 to CL = CL . Correspondingly, for a specified
max

1ifting vehicle, with a prescribed drag polar, the lift-to-drag ratio can be
generated within the range from CL/CD =0 to CL/CD = (CL]CD)max . It is
obvious that, for any performance criterion, whethe;;ié is the range achievable,
or the final speed to be maximized, or the minimum ﬁossible heat influx, the
best performance is obtained through a particular modulation of the lift-to-drag
ratio. Within the scope of the present work we shall usually restrict ourselves
to performance at constant lift-to-drag ratie. Lift-modulation to achieve pre-
scribed constraints will be examined in the final chapters.

Since we consider a versatile lifting wvehicle, it is proper to discuss
entry modes rather than entry vehicles. The three entry modes that have been
discussed are

1. Ballistic entry.

2, Glide entry.

3. Skip entry.

Any vehicle counsidered is supposed to have the capability of entering a
planetary atmosphere in any of these three modes or using any combination of
modes in following an overall, composite trajectory.

First, from the range standpoint, ballistic entry is the least effective
mode. For skip entry, the range for each separate skipping phase is short but
each atmospheric portion of the flight trajectory is followed by a Keplerian
portion in space adding significant distance to the total range. As a matter
of fact, with a high initial entry speed, a skip trajectory cam achieve infin-
ite range while a.glide trajectory totally immersed in the atmosphere is con-
demned to a finite range. Thus, there exists an initial speed such that there
is equal range for skip entry and glide entry, with gliding flight achieving

the longer range at lower initial speed.
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From considerations of aerodynamic heating, with the possible exceptiomn
of the relatively dense vehicle in the ballistic mode, in all three modes, the
hypervelocity vehicle expends the major part of its kinetdic energy in £light

and receives in exchange heat by convection according to the simplified formula

Qe AC

_1, F _
;Lmvz B 2(scD) (9-63)
2770

To minimize this fractiom, that is to reduce the total heat transfer by con-—
vection, it is necessary to determine how the ratio of friction force to total
drag force can be reduced. This matter was discussed in detail in Ref. 1 in
connection with a purely ballistic vehicle and it was demonstrated that the
ratio could be reduced by employing high pressure-drag shapes, that is, blunted
shapes. On the other hand, in the skip and glide modes the geometric configura-
tion of the wehicle will be slender and the above ratio may reach the order of
0.1 which is quite high for vehicle materials to absorb. In skip or glide
modes one must, therefore, comsider the possibility of the vehicle’s radiating
a significant part of this heat back to the surrounding atmosphere. This problem
has been discussed in Ref. 4, and it is found that in a high lift-to-drag ratio
glide mode, if the surface temperature is allowed to reach a high level, the
vehiele can radiate heat at a rate equal to the maximum average convective heat
transfer rate. Furthermore, in the gliding mode the vehicle may require less
coolant than in the ballistic mode. The reason for this is that although in
the gliding mode the same vehicle will receive more heat, the éliding time is
muech longer, by a factor of perhaps one hundred. Therefore, with a sufficiently
high radiant heat'transfer rate the glide vehicle can return te the atmosphere
most of the heat it receives by convection.
i
In generai, for a lifting hyperwvelocity wvehicle a combination of ap ini-

tial entry at a high angle of attack using a pure ballistic mode, followed by

~
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a tip over to lower the angle-of-attack, and continued with a high lift-to-drag

ratio gliding mode, looks promising from the standpoint of aerodynamic heating.
For manned flights, another factor to be considered is the peak deceler-

ation. Along an entry trajectory we consider the peoints where the quantities

E;v and (a/g) reach their respective maximum values. The solutions cb-

tained in Chapter -8 and in the present Chapter are summarized in Table '9-1.

= 2,
(qs)max (qav)max (g)max
et _ o1l _ o1 N
Ballistie n == ¢ sin vy, n=-3siny, n= -7 siny,
Y Y Y
y 6 sin2 —22 y 3 sin Eg y 2 s:i.n'2 59-
Skip tan — = — tan tan — = -
2 (CL/CD) 2 (CL/CD) 2 (CL/CD)
Glide -2 v __ 1 v

Table 9-1. Points of Maximum ES , q

av and (afg) .

Inn the ballistic mode at nearly constant angle Yo the maximum of E;
occurs first, at the lowest value of n , (hence at the highest altitude),
then comes the maximum of E;v , and finally the maximum of ({afg) .

In the skip mode the negative flight path angle increases from the initial
value - Yo te Y= 0 when the vehicle reaches the lowest point. From the
Table, the three maxima occur in the same order. ‘ -

Finally in the glide mode, as the speed decreases continuously along the
flight trajectory, again the vehicle reaches (Es)max first, and then (q_ )

av’ max
In the meantime the deceleration builds up to reach its maximum at the final time.
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The respective maximum values of E; s Aoy and (afg) are summarized

in Table 9-2.

—~ — a
(qs)max (qav)max (g)max
———— 372 . R
3/2 sin YD uo sin YO Br0u051n YO
Ballistic u - —_——— - -—_—
0 6e e e
u 3/2 Y 3y u 372 yz 3v Br u 72 2y
Skip : . exp (g /g ) 2?&: Jc ? exp (g /g ) (colg 9 exp (G /g )
/ZTCL/CD) LD LD LD L°D LD
Glide 1 = 1 TE":}-'E—)"
3/6Br0(cL/cD) 376 Bro(cL/cD) L’"D
Table 9~2. Maximum Values of E; , E;v and (a/g) -
From the formulas, it is seen that using z high lift-to~drag ratio, CL/CD .
has the effect of decreasing GE ) , and also decreasing the peak deceler-

s'max

ation for both ballistic and glide entries. Then, for entry trajectories with

an upper constrain£ on the peak deceleration, it is suggested that high lift

be used t; reduce the deceleration. Unfortunately, because of the lift-drag
relationship and because of heating considerations, the high drag portion of

the drag polar is generally employed so that when. the lift-to-drag ratio increases,
the drag coefficient decreases (Fig. 9-3) and from the expression (9-63) for

total heat transferred by convection, the heat absorbed increases. These effects,

which work at cross purposes, will be discussed again in Chapter 12 in connection
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with the concept of the entry corridor.

Cp
CL
Cp
\-HIGH DRAG
PORTION USED
FOR ENTRY
e
_
/,/’
Cp

Fig. 9-3. Lift Polar for a Lifting Hypervelocity Vehicle.
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CHAPTER 10

YAROSHEVSKIT'S THEORY FOR ENTRY INTO PLANETARY ATMOSPHERES

lO-lf_ INTRODUCTION

Yaroshevgkii's theory for the‘entry_trajectory is a semianalytical
theory. Using some simplifying assumptions, he derived a nonlinear, second-
order differential equation which can be integrated analyitically by using
series expansions. To some extent, Yaroshevskii's theory is a special case-
(Refs. 1,2) of a more sophisticated theory developed by Chapman (Ref. 3).
Because his theory has somé features of merit, we shall present it in this
chapter. Chapman's theory will be developed in the next chapter, and the

connection between the two theories will be. examined.

10-2. THE SECOND-ORDER NONLINEAR DIFFERENTTAL EQUATION FOR THE ENTRY TRAJEC-
TORY

Consider the basic equations for planar entry derived in Chapter 2

2
av pSCHV )
dE = " Tom " esiny
YA
pSC. V 2
dy - L Y -
th = oy T (g " )} cos Y (10-1)
g%-= V gin vy

.

Strietly speaking, as was mentioned iﬁ section 6-2, the 1ift and the
-drag—coefficients -are functions of the angle of attack o , of the Mach number
M , and the Reynolds number R, . For constant angle of attack, Yaroshevskii
assumed that the lift coefficient CL ., and the drag coefficient CD are

functions of the Mach number. TFor an isothermal atmosphere, this is just a
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function of the speed, V
if, in the equation for V , we mneglect the tangential component of
the gravity force, and in the equation for Y and r we use the approxima-

tion of a small flight path angle, we can write the Eqs. (10-1) as

2
av pSCD(v) v
ac - T T om
2
. pSC. (N ¥ 2
W&y . L v -
it = - g+ - (10-2)
d -

The first of thege equations can be used to change the independent variable

to V
dr _ ¥
av pSCD(V) v
Zm ) (10-3)
v
d O, &8 -
Vﬁ:\Yf = -t 5
D pscD(v) v
2m

To derive his second—-order nonlinear differential equation for entry
into a planetary atmosphere, Yaroshevskii used an independent variable x ,

and a dependent variable y defined as

. (1) .dv

x=. TR0
1 CDCY)i (10-4)
A
Y="" Y B P

where Ty is the radius of the plamet and ¥V is the dimensionless speed

v

v (10~5)

/gro
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At this point the following remarks are in order:

a/ The altitude h is small compared to the radius r, of the planet.

0
Hence, g is appro%imate;y constant.

b/ For the same reason, JE;B: can be considered as the circular * -
speed at the entry altitude. Hence, if éhe entry is from circular speed, the
initial value of V is unity,_an& from the definition (10-4) of the independent
variahle =x , this variébie increases monotonically from the initigl wvalue

x=0

If a strictly exponential atmosphere is used, then

[a 1Y

L = _ gar (10-6)

©

where B 1is constant. Hence, from the definition of ¥y
& - par (10-7)
¥y
On the othey hand
dx=_--———._. ——-—:_'—:s}— (10—8)

With these differential relations, and the definition (10-4) of x and vy ,

the Eqs. (10.3) are

RN

— (10-9)
i'_Y_= CL[V(X)] _ 1 _?2 (x)
dx CD(l) /EEE ¥V 2(x)

where in the equation for vy , the approximation of small altitude, r = Ty o
has been used.
Eliminating vy between the two equations above, we obtain a single

equation of the second order
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1

- . N

.2 CIVEI . =2

ady _ _ g L V&) _
= Bro anll + y (10-10)

This equation is Yaroshevskii's nonlinear, second-order differential
equation for studying entry into a planetary atposphere. The quantity Bro
is constant, and for the Earth's atmosphere we can take Bro as about 900 .
The equation takes into account the éffect of the Mach number on the lift and
the drag coefficients at constant angle of attack. Imn general, this equation

has to be integrated numerically. 1In the special case where C. and CD

L
are independent of the Mach number, the equation can be integrated using
some appropriate series expansions, depending on the type of entry trajectory.
Once the variable y dis known as a function of the independent vari-
able x , other quantities of interest can be evaluated.
First, the flight path angle is given by the first of the Eqs. (10-9).

For the time of flight, we write the first of the Egs. (10-2) in terms

of x and ¥y

- Veg vy V) (10-11)

Hence, the time is obtained by performing the quadrature
1~ ax

t=—f - (10-12)
YBg i yV(x)

where X, is the initlal value of x . The distance travelled, s , as

projected on the surface of the planet, is given by the kinematic relation

ds

—_=r

T
-0
& 0 =3 YV cos Y

6

Hence, for small flight path angles, and with the approximation of small

flight altitude relative to r, , we have

0
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e

= = Ygr, Vx) (10-13)

jal

Using Eq. {(10-1l1), it is seen that the distance travelled is given by the in-
tegral
T X L
0 dx
s= /2 & ~ (10-14)

The deceleration along the trajectory, during entry, is - (dv/dt) . Using

the first of the Eqs. (10-2), and the definitions (10-4) and (10-5), we have

_Cplvel

- Gl = VBx y V2 ) (10-15)

r —_— ———
0 CD(l)
Other physical quantities of interest, such as the heating rate and the total

heat absorbed, will be given in the immediately following section when we con-

sider entry at constant lift-to-drag ratio.

10-3., ATMOSPHERIC ENTRY AT CONSTANT LIFT~TO-DRAG RATIO

In practice, the gimplest and most interesting case is that obtained
for constant lift and drag coefficients. This case is commonly encourntered
along the main part of the entry trajectory where, at high Mach number, the
1ift and the drag coefficients are independent of M . It is also along
this portion of the trajectory that the deceleration and the heating rate
reach thelr maxima.

From the definition of x , (10-4), it is seen that when C,_ dis inde-

D

pendent of the Mach number

/ 8%y
v ]

x = log V=e™ (10-16)

The basic nonlinear differential equatiom, Eq. (10-10), is reduced to
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9..%:__ 78T _B.;.f:_.:_i (10-17)

This equation can be integrated by using an appropriate series expansion, de-
pending on the type of trajectory.

While the distance trayelled, Eq. (10-14), repains the same, in the case
of constant lifF-to—draé ratio entry, the expression for the timé of flight

and the deceleration, Eqs. (10-12) and (10-15) become

X X =
£ = l‘ Jr e dx (10—18)
Be 'z, 7
and
T AN L RS weT2X -
a= (dt/g) = /Br, ye (10-19)

In the numerical computation, we can use the following approximate character-—

istic values of the Earth

L= 36.5 sec , ﬁ ~ 212 km (10-20)
/Bg

vcircular = /gro = 7850 m/sec

For a strictly exponential atmosphere, the dependent variable y is simply
propontional.to the. atmospheric density p . With the approximate values

given above,
v = 1.04 x 10%8 (10-21)

where B is the ballistic parameter

5C
_"“p 2 _
B=—ou/kg (10-22)
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The aerodynamic heating rate per unit area on a body reaches its maximum at

a stagnation point of radius of curvature R , and is given by (Refs. 4-06)

pvt (10-23)

e

where the constants C , n and m depend on. the type of boundary layer.
Por laminar flow, =n = 1/2 , and the value of m has been-given by various
authors as 3.1 ¢ mg 3.25 . For his nuﬁerical computation, Yaroshevskii
adopted the following formula as given by Kemp and Riddell, (Ref. 7), for tﬁe

-

stagnation point heat transfer rate:

1 -
8.8 x 107 2, v .32 keal
= p7( ) —-

R Jt,  misec

For a constant drag coefficient, for which the relations (10-16) and (10-21)

- q (10-24)

apply, this formula becomes

85y015e-3.25x keal

q =
s RO.SBO.5 mzsec

(10-25)

If there is a turbulent boundary layer, the aerodynamic heating rate per unit
area reaches its maximum at the section where the transition through the speed
of sound takes place, (Ref. 8). The formula (10-25) for laminar flow is re-

placed by, (Ref. 1),

. - géyo'se_S'lgx koal
t RQ.ZBO.S 2

(10-26)
m sec
for the heat transfer rate at the turbulent sonic point.
Another quantity of interest in aerodynamic heating is the total heat

absorbed per unit area
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' —§== [ qat (10-27)

where A is the whole surface wetted by the boundary layer, and g dis given
by Eq. (10-25) for laminar flow, and Eq. (10-26) for turbulent flow. The in-
tegration with respect te t can be changed into the integration with respect

to x -, by the use-of Eq. (10-18),

qQ -2.25%
s _ 2250 X € keal
- 05035] o3& (10-28) _
R°°°B X,y m
and
qQ : -2.19x%
t 665 X e keal
E = 0.2038) o2 & 2 (10-29)
R B X, ¥ m

It is seen‘that, if the basic nonlinear differential equation for con-
stant lift-to-drag ratio entry, Eq. (10-17), can be integrated, the variable
y 1is obtained as function of the independent variable x . The deceleration
during entry is given‘by Eq. (10-19), while the time of flight, the heating
rate and the heat absorbed are obtained explicitly or by quadratures through

Eqs. (10-18), (10-25) - (10.26), and (10-28) - (10-29), respectively.

10-4. SERIES SOLUTIONS OF THE BASIC NONLINEAR DIFFERENTIAL EQUATION
The basic nonlinear differential equation for constant 1ift-t6-drag
ratio entry, Eq. (10-17), can be integrated approximately by using series solu-

tions. We shall integrate this equation in the following cases.

10-4.1. Ballistic Decay From Satellite Orbits

For ballistic entry trajectory, CL/CD =0 , and Eq. (10-17) is reduced

to

dy_e =1 (10-30)
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Uader the action of atmospheric drag, acting primarily at periapsis, a high
altitude satellite orbit tends to a circular orbit before effective entry.
Hence, in this case, for the portion of the trajectory where effective entry

is achieved, Eq. (10-30) is integrated with the initial conditions

x, =0 , y(@ =0 , y'(0) =0 (10-31)

.
1

wihere the prime denotes the derivative taken with respect to x . The dif-

ferential equation (10-30) has a singularity at y = 0" . To remove this

singularity, we notice that, in the neighborhood of x = 0 , the equation be-

comes
yy" = 2x (10-32)

This equation has the solution
y= /20 (10-33)

satisfying the initial conditions {10-31). Hence, we can seek a solution of

the differential equation (10-30) in the form

/8 _3/2 2., .3 5
/. J/;-x (ao taxtax tax o+ . ) (10-34)

Writing Eq. (10-30)

yy' o= 2x + 2x2 -+ %-xs +-§-x4 +. .. (10-35)

substituting the series (10-34), and equating coefficients of like powers in

x , we obtain for the coefficients a

1 1 47
6

» 2y =% » 337775z s ¢ (10-36)

The recurrence formula for computing the coefficients a, is
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. ok g k=1
A DT T3 miy @A DOE a8 (10-37)
- 7 3 G+ Dk + 3)
3
It can be seen that
-Iakl-s 1/ + 2" (10-38)

Therefore, the radius of convergence of the series is not less than 1.5

The series solution is sufficiently accurate to evaluate the maximum decel—h
eration and heat transfer rate which occurs during the fumdamental part of
the entry trajectory where the main assump£ions used for the derivation of-
the nonlinear differential equation are walid.

For < 1 , we need only three terms of the series, and the trun-

cated Yo function for ballistic entry from circular orbit is
= ﬁ(‘l‘ + X+ 52—) <372 (10-39)
Yo 3 6 ' 2%

From Eq. (10-19), the deceleration is

5/2 7/2
dv _ /8Br 3/2 | x x ' ~2% _
- (——dt/g) = / 5 0 (x + S+ 24) e (10-40)

The peak deceleration is obtained by taking the derivative of this equation

with respect to x and setting it equal to zero. The resulting ‘equation is

a

AxS + 9x% + 76x - 72 = 0 (10-41)

The solution of this equation gives the conditions at maximum deceleration:

x = 0.835 , ——— = 0.434 (10-42)

/ BIg
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y=1.4 , - (g%Jg)max = 0,277 /Bro (10-42, continged)

Substitution of the solution (10-39) into Eqs: (10-25) zand (10-26) yields
the expression for the maximum aercdynamic heating rate per'unit area for
laminar flow, (at the stagnation point), and turfulgnt flow, (at the sonic
point), respectively. The maximization of these functions provides:

The maximum heating rate along the trajectory under laminar flow condi-

tions is characterized by:

x = 0,237 , —4—= 0.789
/ &5
(10-43)
o " 17.4  keal '
y=20.197 , ¢4 =505 2
max R B m sec

The maximum heating rate along the trajectory under turbulent flow condi-

tions is characterized by:

v

x=0.4 |, = 0.670
; 8Ty
(10-44)
_ _ 3.65 kcal
y = 0.486  q. =552
max R B m sec

10-4.2. Ballistic Entry With Various Tnitial Flight Path Angles.

The basic equation for ballistic entry, Eq. (10-30), is now integrated
with nonzero initial flight path angle. For entry from circular speed, the

initial conditions are

x, =0 , (0 =0 , y'(0=c (10-45)

where, from the first of the Eqs. (10-9)

cl = - Bro Yi > Q. (10-46)
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First, we consider the case of small values of e, - The case
¢y = 0 has been considered in the previous.section. For small values of x ,
we have approximately the same Eq. (10-32). We tescale the initial condi-

tions (10-45) by using the transformation of variables

n = 55- s ¥ < Cig(n) (10-47)
c -
) 1
Thus, Eq. (10-32) becomes
d2 2
—'%5 = £0 (10-48) -
dn® B

It has the same form as before, but with the new standard initial condition

—_— = -q‘&-_—: - -——-
;=0 , g@=0, F-1 (10-49)

Hence, Eq. (10-48) with the initial conditions (10-42) can be inteé?ated numer—

ically once for all, and by the transformation (10-47), the result obtained

can be used for any.small value of ¢ = - _Bro Y; . TFig, 10-1 plots this

solution as a solid line, while the dotted line is the exact analytical solu-

tion of the Eq. (10-48) with thé initial conditions g(0) =0 , dg/dn=0 .
For large values of e, » We consider Eq. (10-30), or rather its ex-

panded form, Eq. (10-35). Based on the initial conditions (10-45), we seek

its series solution in the form

ez (10-50)
m -

f 18

y=
m= 1
Substituting this series into Eq. (10-35) and equating coefficients of like

powers in x , we have for the coefficients ch

-1 = R SN
cp=or » 3= @ -7 3
1 c 1
1
I N I _
c4 = (1L - 3 + 4) e (10 51)
c c 1
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C3.10,20 17, 1 _ ued)
ey = 3 - 5 + 7 61 900 (10-31, continued)
cl cl c1 1

g (n)

I |
0 0.5 1.0

7

Filg. 10-1. Solution for Ballistic Eatry From Circular
Speed at Small Initial Flight Path Angle

It can be seen that the recurrence formula to-evaluate“‘cm is

m -~ 1 m
1% T @m - Dt

1

nfm - 1) e kik - 1) Ll 1 g - Kk (10-52)
2

LI I |

k
Figure 10-2 plots the numerical solution of Eq. (10-30) using the ini-

tial conditions (10-45) with various values of cp » @8 solid lines. The

analytical solution for entry at zero initial flight path angle, Eq. (10-34),

and entry at various nonzero initial flight path- angles, Eq. (10-50), using
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4 terms of the series, are plotted as dotted lines.

¥
C 25

L— 20

— 15

— 10

Fig. 10.2. GSolutions for Ballistic Entry From Circular
Speed at Various Imitial Flight Path Angles

Figures 10-3 to 10-8 give the plots of the numeri;al integration of
the equation for ballistic entry, Eq. (10-3}, with various values for
Sl /;BTO-Y:L :
Figure 10-3 plots y' ="- Bro Y versus X , and it can be used to
evaluate the flight path angle during entry.
Figure 10-4 plots the deceleration during entry, as givem by Eq. (10-19).
Figure 10-5 plots the variation of the heating rate at the stagnatiom

point for laminar flow. As given by Eq. (10-25), the figure plots q, versus

x , where
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Fig. 10-3. Variations of y' = - 30 vy versus x , for
Ballistic Entry
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o

20+t

10+

1 ! 1 I § {
0 0.5 10 1.5 " a0 25 30z

Fig. 10-4. 7Variation of the Deceleration During Ballistic Entry
From Circular Speed for Various Imitial Flight Path Angles

Is

o6 6 =6

¢=-30% .

i

a.1 az 43 04 a5 o0& 67 o8 2.8 Bz

Fig. 10-5, Variation of the Laminar Heating Rate During

Ballistic Entry From Circular Speed



10-17

/BB 0.5 -3.25%

qS = “E qS (10-53)

Figure 10-6 plets the variation of the heating rate for turbulent flow.

As given by Eq. (10~26), the figure plots Et versus x , where

7 - 3°°§§°'8-qt L ,0-B,-3.19x (10-58)
0.6 - Py
0.5 c=5
oal f /7 =4
!!.;'-’ 0'3. B . ©=3
‘o.é “%e \

0.1 y \\C1=l

! cy=0 )
) ! ] | | ] | ! | I I
0 0l 02 03 04 05 06 07 08 09 10
X

Fig. 10-6. Variation of the Turbulent Heating Rate During
Ballistie Entry From Circular Speed

Finally, Fig. (30-7) plots the range versus x , as given by Eq. (10-14)

and Fig. 10-8 plots the time of Jl:light versus X as given by Eq. (10-18).
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i
;;: / ¢ =1L5
- 500 ’/ S1=2
e 3’32
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0 05 10O 1.5 20 25 3.0
X
Fig. 20-7. Variation of the Range for Ballistic Entry
From Girculay Speed
C|=0
300
c,‘-‘-O.S
g 2001 cs= |
w Ci=|.5
- o=2
e !00 “‘/// or=2
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//“ €1=6
3 i [ i i i

Fig. 10-8,

05 10 15 20 25 30

Time of Flight Versus x for Ballistic Entry
¥ram Circular Speed
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10-4.3. Lifting Entry From Circular Speed

For entry with constant ;iﬁt and drag coefficients, the flight param-
eter to be specified is K = /Sro (CL/CD) . Hence, we write the basic non-
linear differential equation, Eq. (10-17)

2z -
y|:=_K+e___-_-__1

C

» K= [br, o (10-55)
D
We first integrate this éﬁuation for small values of K .. If K is of the
order of unity, the corresponding lift—to-drag ratio (for Earth's atmosphere)
is of the order of CL]CD = 1/30 . i
For entry from circular speed with nearly zero initial flight path -

angle, that is, for the case of orbit decay with small 1lift, we have the initial

conditions

x,=0 , vy =0 , y'() =0 (10-56)

i

The solution of Eq. (10-55) is sought as a power series in xllz .

The solution which satisfies the initial conditions (10-56) is

‘ 2 3
_ 8.3j2 4k 2. [B1. K 5/2. . 8K 685 . 3
y = /;" "X /3Gt ¥ G tyasy ¥
\ A . (10-57)
- /81 13K 11x* 7/2
+ /—_-(—+ + Y.L
328 YISO T,

For 1Kl < 3 which, in the case of the Earth's atmosphere, corresponds to

the range of lift-to-drag ratios |CL/CD| < 0.1 , the solution (10-537) is
sufficiently accurate for the range of x within the intervél where the maxi-
mum-deceleration andnthe‘maximum heating rate occur.

When the entry angle is not zero, we have the initial conditions

=0, y(00=0 , y'(0) =¢ (10-58)
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where e = - /Bro Yy - The solution to Eq. (10-55) is sought as a power

series in x

32 + c3%3 4 c.x4 + ... (10-59)

y=c¢x+e A

1 2

Substituting this series into Eq. (10-55) and equating like powers in x

yields for the coefficients ¢

™
- L _K S Yy
€y = (cl 2) > C3 3c1(2c1 - 2
°1
' (10-60) ~
1 & 1l K i,, 8
c, = {——— & +l-""“)(_""3K)]
4 ]_2c:L 3 301 2 1 2 =

1

The radius of convergence of this series is small and the solution is
restricted to small values.of X

Numerical integration of Egq. (10-55) for entry from circular speed with
different wvalues of = has been carried out by Yaroshevskii, and the results
are plotted in Figs. 10-9 through 10-11. The dotted lines are the plots of
the analytiéél solutions, Egs. (10-57) and (10-59).

Figure 10-9 plots }he function y wversus x for entry at zero ini-
tial flight path angle from circular speeq using K as parameter.

Figure 10-10 plots the function y wversus =X for entry with nonzero
initial flight path angle from circular speed using K as parameter.

Figure 10-11 plots the maximum deceleration versus the initial flight
path angle, It is seen that, as c1 = - J7§;E Vg increases }rom zero, the
max imumn Aeceleration first slightly decreases, and then increases. Also, it
is seen that the effect of positive 1ift in reducing the maximum deceleration
is very powerful., Effects of the lift-to-drag ratio, CL/CD s on maximum

deceleration and maximum heating rate during entry will be discussed in de-

tail in Chapter 1l in the discussion of Chapman's theory for atmospheric
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Fig. 10-9. Variations of y £or Lifting Entry at Zero
Initial Flight Path Angle From Circular Speed
— ——— Egs. 10-57, 10-59. Eq. 10-62.
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Fig. 10-10. Variatioms of y for Lifting Eantry at Various
Initial Flight Path Angles From Circular Speed
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entry, which is more accurate than Yaroshevskii's theory.

o
™ f—
W
D -

Fig. 10-11. Variations of the Maximum Deceleration as

Function of the Initial Flight Path Angle

10-4.4, Glidiné Trajectory

If the lift-to-drag ratio is large while the flight path angle remains
small, we have the condition of equilibrium glide as first formulated by )

Sanger (Refs. 9,10). In this case, in Eg. (10-55), the term y" , which

represents the vertical acceleration, is nearly zero, and the equation is re-

duced to the equilibrium condition for gliding flight

y = = (10-61)

When the speed becomes small, the assumption of smail vertical acceler-

ation is no longer valid. For small speed, we use the transformation
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ezx‘ —"1 '
yE g2 £ (10-62)
where we define- z as
;x
zZ = "IZ-‘ (10"'63)
Hence, the relation between the derivatives is
d -, 4 -
L) =250 (10-64)
With this transformation, the basic equatiomn, Eq. (10-55)., becomes
2.2 1, &f 2 1, df L, 2 1
z (2" - —5+ 205z -5 —Fbézi=~-1+%F (10-65)
2 2 27 dz £
K d=z K

For CL/CD >1 - I!./K2 < (1/8r) << 1 , and an approximatiozi of this equa-

tion is

2
4:a°€ o 3df L, 200y o 1 _
z dzz + 52 iz + 4z7f(z) = -1 + 0 {10-66)

The function £(z) dis constructed to extend the validity of the solution
for small speed. Hence, for a trajectory beyond the validity of the solution

(10-61), by the definition (10~62), we have the initial conditions

= 4ag _ -
£H0) =1 , £ =0 .(10 67)

to integrate.Eg. (10=66)., <
For small =z , an approximate solution to the equatiom is

£(z) = 1 - 4z® (10-68)

while for large z , an.approximate solution is

£z) == -5 (10-69)
2
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Now, if we use the golution (10-61) in Eq. (10-14) to compute the

range, we have

_ 9
5—3’—2- (10-70)
-1 1 -7,

“ ; —B- X :de r0 C
s = M/E—-f = ——--9 log
; 8 Xs e2x ) CD

On the other hand, if the solution (10-61) for gliding flight is used

in Eq. (10-18) to evaluate the time of flight, we have

= [L+7V.]
L1 xogefax _1/%0 ‘L [1 - V] L i
£ . f = - 7 —g—(c—) log (10-71)

B x e -1 D [1+VF1-7] -
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CHAPTER 11

CHAPMAN'S THEORY FOR ENTRY INTO PLANETARY ATMOSPHERES

11-1. .IﬁTRDDUCTiON'

" Compared with Yaroshevskii;g fheory for the entry trajectory, Chapman's
theory offers g-higher dégfee of soPhistication. Using some simplifying as-
sumptions, Chapman derived a relatively simple nonlinear differential equa-
tion of the second order, free of the characteristics of the vehicle (Ref. I).
This is made possible by introducing a set of completely nondimensionalized
- variaﬁ}es. Chapman's reduced equation includes various terms, certain of
which represent the gravity force, the centrifugal force and the 1lift force.
If these particular terms are disrega;ded, the differential equation becomes
linear and itg integration yields precisely the solution of Allen and Eggers
for ballistic entry at steep flight path angles. If, in the basic equation,
ali the other terms are disregarded according to the equilibrium glide as-
sumption, the resulting truncated differential equation yields the solution
of Singer for equilibrium glide with relatively large lift-to-drag ratio.

In the general case, Chapman's equation has to be integrated numerically.
For each prescribed lift-to-drag ratio, and initial speed and flight path
angle, the integration of the equation generates a solution. Each of these
solutions- is universal in the sense-that it can be—used for any vehicle, of
arbitrary weight, dimensions and shape, entering an arbitrary atmosphefe.
Only the lift~-to-drag ratio, initial speed, and initial f£light path angle

serve as parameters of the solution.

11-2. DEVELOPMENT OF THE NONLINEAR DIFFERENTTAL EQUATLON

In deriving his equation, Chapman used the set of the equations. of


http:equations.of

11-2

equilibrium of the forces along the radial and the ndrmal direction to the
flight path., For the sake of wniformity, we shall use instead the equations
in tangential coordinates as derived in Chapter 2.

For planar motion, the equations are

2
§2_= - EEEQY—-~ sin
dat 2m & ¥
2
pS3C.V 2 .
ay L Y _
v Tt - (s - ) cos v (11-1)
dr _ . B
ar V sin v

The last equation may be used to make ¥ the independent variable. .

av __ %Y ¢
dr 2m gin vy |V .
0SC . (11-2)

&y o °TL o _ERy cosy
dr 2m sin v + 2) r sin ¥

We shall use Chapman's basic assumptions and his coordinate transforma-
tion to reduce this pair of equations of motion to a single, ordinary, non-
linear differential equation of the second order.

In his theory, Chapman used two basic assumptions:

a/ In a given increment of time, the fractional change in distance from
the planet center is small compared to the fractional change in the horizontal

component of the velocity. Mathematically, this assumption is expressed as

*

dr
hy

IQLE_EEEQIL > (11-3)

V cos ¥

b/ TFor a lifting wvehicle, the flight path angle vy dis sufficiently
small that the lift compomnent in the horizontal direction is small compared
to the drag component in the same direction. Mathematically, this assumptiom

is expressed as
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CL
1> |== tany (11-4)
D
It is erroneous to think that these assumptions will restrict Chapman's
anal&éis to entry trajectories with small flight path angles and small 1ift-
to~drag ¥atio§ as many authors have beliéved. On the contrary, thesé assump-
tions, applied simultaneously, cgnstitute a well-balanced set of hypotheses
apd make Chapﬁan's‘theory applicable to a large family of entry trajectories.
It is clear tﬁat assumption b/ is identically satisfied for ballistic entry.
On the other hand, in this case, assumption a/ does not specifically restrict
the flight path angle, since for ballistic eatry, Fhe flisht path angle is
nearly constant, and the left—hand side of inequality (11-3) simply represents
the fractiéﬁal change in the speed. Thue, the assumption is ;alid whenever
the aerodynamic force becomes sensible enough to induce a rapid change in the
speed, regardless of the magnitude ofrthe flight path angle.
Chapman used an independent variable u , and a dependent variable Z

!
defined as

_ _ eSC, - _ '
u = __J_V/C—O—S N Z = —'—'—'—‘2mD '/I}B; u (11"5)
er

It is convenient for subsequent derivations to express the basic assump-
tion (11-3) in terms of the u and Z variables. We write this inequality

with the aid of the Egs. (11-2) and (11-5)

- 7 C i |
a cosdl3£V cos Yi -1 éﬁgié——(l + Eé-tan y + E‘%%?i;b >> 1
u sin ¥y D YBr Z
or ,
¢ U sin u sin
[1+C—tany+u_“‘:l > —_-—ll
i) YBr Z JB—I"Z '

Hence, the basic assumption a/ dis simply expressed as
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C

1+ 22 tan v| > u_n__‘fl (11-3a)
D /Br Z

" Now, the derivative of u s as defined by Eq. (11-5), with respect to

r , is

'd___ﬁ_cosydv V31nYdy+Vcosy
dr dr — dr
Yar Ygr 2rvgr

From Eqé. (11-2) and definition (11-5), the exact equation for u can be

written as

du J/_ u sin y .
L. (1+-—-—-tan y + =—=—) (11-6)
dr sin vy D 2/Br Z

Hence, if the basic assumption a/ and b/ , Eg. (11-3a) aﬁd {11-4), are

applied, the simplified equation for u is

&___I_f8 e
dr gin vy ¥ r (11-7)

To derive the equation in Z , we consider -the différential law—for-

the atmospheric density,

[

20 - . gdr (11-8)

©

By taking the derivative of 2 s defined by Eq. (11-5), with respect to r
and using Egs. (11-7) and (11-8), we have

@=_Z_E_/_§”— L, 1 de ;
dr E—sin Yy vYr 8z(1 28r + 282 dr) . (}1 9)

Concerning the last term of this equation, if a strictly exponential
atmosphere is used, B = coanstant and dB/dr = 0 . On the other hand, if
-an isothermal atmosphere is used, B/g = constant. -, and (1/2 82)(d8/dr) =
- (1/Br) . 1In both cases, since Br is large, the last term of the equa-

tion can be taken as - BZ and this equation becomes
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e, 2 /g(% + /Bt sin v) (11-10)

dr sin vy

Finally, the second of Eg. (11-2) in terms of the u and Z variables

is
dy 3 8 Cp U_cos v cosz Y
o _Z_ Bl (@ - 25 (11-11)
u sin v D /Br Z

Chapman used wu as the independent variable. Hence, Eq. (11-7) is
used to change the independent variable from r to u , and the equations_

for Z and y , Egs. (11~10) and (11-11), become

51»_—2_ - % = /Br sin vy (11-12)
du u
and
dy 1 CL u cos ¥ 0052 Y
—=-Zlg* —(1 - =51 (11-13)
du u D /BT Z u

Equation (11-12) is Chapman's first equation. It is used to evaluate
the flight path angle. If we take the derivative of this equation with re-

spect to u , using Eq. (11-13), we have

— 2 =2 2 C
—f—_(% ~ %y 4 cos y(w ~ - cos” v) Js_r‘(C—L) cos v =0 (L1-14)

du du u Zu D

i

This equation is equivalent to Chapman's second-order nonlinear diﬁ'f‘erential
equation with 7 as the dependent variable and u as. the independe,nt vari-
able. In this equation, cos y = ¥l - sin2 ¥ can be expres'sed in t‘erms of
W , Z and d%Z/du through Eq. (11-12).

To obtain the equation in the form idemtical to the one given by Chap-

man in his classical paper (Ref. 1), we write it as
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2 = — = —2 . b .G
I e & Al =14 ) cos Y
" d_..g _ (dE .Zi)- e 11“_} cos Y 4 @(E}_) c033 v
du du u Zn iY]
’ (11-15)
Ecos2 sin2 . CL 2
+ X Lot /Br(z?) cos y sin” v = 0
Z D
With the aid of Eq. (11~12), we consider the sum of the terns
—_— = = 2 . 2 C .
- & 29 42 C05 Y SIR Y, Jﬁ;C—ED cos Yy sinz Y
— "= = C
du u zZ D
CL 2 T 052 sin
= - YBr sin y[1 - (E~9 cog” v tan Y - e Y%‘ Y] = VBr sin ¥ -
ih) VBr Z

The last step is a result of applying the basic assumptions a/ and b/ ,
Egs. (11-3a) and (11-4). This is equivalent to neglecting the terms contain-

ing sin® vy 4n Eq. (11-15), yielding

2 : C

2+ - ' -
cEE _ @z _ %y - A-u) sy - Bt cos®y
du du u Zu D
Vertical Vertical component Gravity minus © Life
acceleration of drag force centrifugal force force
(T1-16)

This equation is the second Chapman equation, Following Chapman, we have
identified the different components of the force as labelled.
c

— 2
= iﬂ;{%%%.;L cos4 v ~ VBRI EL'CO§3 Y - (11-16a)
Zu D

S

- Z
u - =
u

2 e
&1 18

In general, this nonlinear differential equation has to be integrated
numerically. For a nenlifting vehicle, CL/CD = 0 , the equation is appli-

cable to large £light path angles as well as smzll angles. For lifting vehi-

cles, it is applicable when (CL/CD) tan ¥y is small.
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11-3. THE Z FUNCTIONS AND RELATED QUANTITIES
As mentioned in the introductory section of this chapter, Chapman's
equation, Eq. (11-16), is universal in the sense that it is free of the phys-
icél charactéristic%‘of the vehicle. Hence, it is applicable to any type of
entry v;hicle regardless of its Weight; dimensions and shape.
- Foé an entry trajectory, since Ei = 0 K only -initial conditions on
Ei and Yg neéd be-given. The flight paraméter CL]CD and the character-
istic of the atmosphere, Br , must, of course, be specified. -
¥or each planetary atmosphere, the average value for Rfr is. known to
a greéter of lesser degree of ac;uracy, as was discusged in Chapter 6. TFor
Earth, Br is 30 . Thus, Eq. (11-16) can be integrated ﬁﬁmericaliy start-

ing from the initial wvalue Ei of the independent variable, using the ini-

tial conditions on E; and di]dﬁ; . For an entry trajectory,
'E(Ei) = Q ‘ (11~17)

Since the basic nonlinear equation has a singularity at E'=‘0 » The first
step in the numerical integration musit be handled analytically by using an ap-
proximate value for % in the initial portion of the trajectory, depending
on the type of entry. Some.approximate 7 functioms will be given in the
next section., If Y is given, the initial wvalue for dE]dﬁ; is -given by

Eq. (11-12)  as

_ E. .
d—E—-— = JyBr sin Y + ___-——1 = /Br sin Yq (11-18)
, dui ui

For each flight program and entry condition, the resulting wvariation
of Z as a function of u can be tabulated. These Tables, known as the
Tables of the 7 TFunctions (Ref. 2), can be used to analyze the entry of any

arbitrary vehicle,
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In some instances, these Tables, computed for entry into the Earth's
atmosphere, can be extrapolated for use with other planetary atmospheres.
" First, for a shallow entry at very small flight path angle, Eq. (11-16)

is reduced to

L
e+ B == 0 (11-19)
with the initial condition for a prescribed Ei

4 -y (11-20) -

du,
i

Z(ui) =0 ,

Hence, in this case, Tables of the 7 functions can be used for any plane-
tary atmosphere, for entry with the same prescribed flight parameter
JE;.(CL/CD) , as far as the variations of Z and u are concerned. TFor
the flight path angle, using subscript e for the Earth, and subscript f

for any other planet, from Eq. (11-12) comes

/ (Br) R

P /oy,

where Lk is the conversion factor. The condition discussed above is, in
particular, true for a decaying orbit for various lift-to-drag ratios. Im
this case, Ei =1 ,

Next, the extrapolation can be extended to the cases of smal; entry

angle. Equation (11-19) is still valid, but with the initial conditions

Z@) =0 , L= Bry (11-22)

Hence, the Tables can be used for any planetary atmosphere, for entry with

the same /EE-(CL/CD) and /EE-Yi . Under these conditions, the Z and

u variations are the same, while the <y wvariation is obta;ned from Eq. (11-21).
In all cases, the validity of the application is restricted to_the

part of the trajectory where the flight path angle remains small.
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Several useful quantities during entry can be constructed from the -
Tables of the Z functions;
+° The first quantity of interest ig the deceleration during entry. The
deceleration along the flight trajectory-is gimply dv/dt . The first of

Eqs. (11-1), and definitions (11-5) of u and Z , yields

- ey < LBEZ Uy oin (11-23)
dt 2
cos Y
For small f£light path angles,
- %/g) =~ BT Z u ¢ (11-24)

and the deceleration is simply proportional toc the product Zu . ;Réfer—
ence 1l gives several plots of VBr Z u versus u for different types of
entry. Some of these plots are reproduced in section 11-5 of this chapte?.
They are useful in locating the speed u and the altitude Z where the de-
celeration reaches its maxima and minima during. entry.

The deceleration due to the combined 1ift and drag forces, as felt by
the pilot or an accelerometer during entry, is

¥ 7 C 2
§= /(;_g)z + (.D_.)2 = __'/B_g_‘_l. 1+ (C—I’-) (11-25)

g coszy / D

Hence, for entry at small angles, the deceleration due to aesrodynamic force

is obtained simply by multiplying the vehicle deceleratiom, given by

Eq. (11-24), by the constant factor J/i + (CLfCD)2 .

The 7 function provides the flight altitude of the vehicle oﬁce the
drag parameter (SCDIZm) is specified. For an arbitrary atmosphere, the
altitude is most conveniently expressed in terms of the local atmospheric
density p . Let subscript s denote the condition at sea level. From

the definition (11-5) of Z , we have
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2 : ¥y £z
o= G =2 (11-26)
s D'e s u

Héncé, for a strictly exponential atmosphere, the altitude h is given by

SC.r p —
1 D"'s"s u
h = = log[¢ D (11-27)

Another quantity of interest is the dynamic pressure exerted on the
vehicle.

Zovie @EyYBrZu, @,y (11-28)"
S 2 sC
°p cos Yy D

Hence, the dynamic pressure is proportiomal to the deceleration of the wvehi-

—

cle.

The free-stream Reynolds number per unit iength is

R ) —
“e _Vp _ _2/Bg m, = 2/g, m | =
2 ¥ U cos Y(SCD) Z = u ‘SCD) Z (11-29)

where p 1is the atmospheric dynamic viscosity. Thus, -the Reynolds number per
unit length is proportional to the Z function.

Relatively simple expressions can also be obtained for the aerodynamic
héating rate per unit area, ¢ , and the total heat absorbed per unit area,
Q/A

According to the local similarity law of Lees, (Refs. 3,4), the heat-
ing rate g at ény point on a body is equal to a fraction of the h;;ting
rate qq at a stagnation point of radius of curvature R . Thus, the local

heating rate ig expressed as

ky

qa. (11-30)
9 )

where the heating rate in hypersonic flow at a stagnation point, q, » can

be expressed as
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o) 2
qq fﬁ(—pol ('cos 7 ® & cal/u“sec (1i~-31)

vwhere the constants C , n , and m depend on the type of boundary layer
flow. For laminar fl&w, n= %— . A simple power law, m = 3 , for the
speed together with the expre551on (11-26) for the density ratio, gives the

express:.on for the Laminar convective heat transfer rate in terms of the

Z and u variables

» &4y / 2m g .k cal -
q=[C }Ili/SC RJI 3175 h (11-32)
0 0 cos y M sec
where
i 5 i
1=z22%% (11-33)

The expression for the heat transfer rate has been written in the form of the
product of thre‘e factors. The first factor represents the effect on heat
flux of the particular planetary atmoéphere. The second factor represents
the gffect of the physical characteristics of the vehicles, that ié, the mass,
dimensions and shapr;: of the vehicle. The last factor, which for flight at

small flight path angles is reduced to Ellz u 512

s represents the ef-
fect of the particular type of entry trajectory.

Although Eq. (11-32) for heating rate is useful in studying vehicles
designed—to operate-at -radiation-equilibrium—temperatures; an-equation—Ffor-

the total heat absorbed, Q . during entry is of more interest for heat-sink

type vehicles.' This is expressed in the form of an integral
= [fadtds = [fk q_dtda (11-34)

where A is the whole surface wetted by the boundary layer. Let
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E%JkldA=%{—3—-dA (11-35)

where k2 ig the factor which takes into accommt the -variations in heat

flux over the whole surface A . For a hemisphere, we have then k, = 0.5
= szqudt (11-36)

Using the exP;essioﬁ (11-32) for q = q/kl in this integral, we have

1 5
— — z2-2
_ 48 / 2m Z"u _
Q= I8 FgIlor /o o] f o (11-37) -

-

The integration with respect to the independent variable u can be accomplished

if the simplified expression (11-7) for du/dr d4s rewritten with respect to

t H
dE'__éi_gg o Zu _
dt  -dr dt JB—gcos‘Y (11-38)
This equation gives the time of flight between Ei and u as
1 %1 cos y du
t = i - (11-39)

@; Zu

Substitution of (11-38) into (11-37), yields the expression for the total heat

absorbed between Ei and u
- 4 e . -
Q= [C 2 ]Isz SC R} Q kcal (11 40}
Bg ropo D .

(11-41)

where !
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11-4. SOME APPROXIMATE ANATYTTCAT, SOLUTIONS

The ultimate purpose of the Chapman formulation is the numerical in-
tegration and tabulation of the z functions: as generated by Eq. (11-16),
for use in the preliminary design cf the entry vehicle and its mission
planning; Although Chapman's equation is énly appro;imate, the assumptioﬂs
made are general enmough 80 that the basig noalinear equation, Eg. (11-16),
contains ;11 the principai effects of the forces acting on the vehicle dur-
ing entry. Hence, under various assumptions to simplify this equation, Chap-

man's reduced equation should provide the other first-order solutions dis-

*

cussed previously. In this section, we shall comsider several such cases.

11-4.1., Yaroshevskii's Solution

For constant lift-to-drag ratio entry, Yaroshevskii's second-order non-
linear differential equation, discussed in Chapter 10, is simply a case of
Chapman's equation. A

For constant lift and drag coefficients, Yaroshevskii's variables are

(Ref. 5)

A= Y sc. " Jjr
= o070 - D /0 _
x = log 7 » YEqn JE P (11-42)

where the subscript 0 denotes the condition at a reference level,

Tn the more sophisticated definition of Cﬁapﬁan's variables, Eqs. (11-5),
if a constant reference value for r is used, and a2 very small flight path
angle is assumed, then

T 7z'=i;23/§‘£ (11-43)
v o

Hence, the relations between the two sets of variables are
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—X%

=y ., u=e (11-44)

SRR

The Eorreaponding relation Between the derivatives is
sdys s x d _
'::( }=-¢ dx(') = -

_& )
EEC ) . (11-45)
du

2]~ .

Transformations (li-24) and (11-45) applied to Chapman's simplified equation

for entry at very small flight path angles, Eg. (11-19), gives

dzy 1 - er CL
-+ —) = —_ =~
dx2 f 7 /grO(CD) 0 (11-46)

This equation is identical to Yaroshevskii's equation, Eq. (10-17), and its
analytical solutions for various entry trajectories have been-presented in

Chapter 10.

11-4.2. Solution For Ballistic Entry

For ballistic entry, using Allen and Eggers assumption (Ref. 6), we dis-—
regard the gravity, centrifugal and lift force in Chapman's equation, Eq. (11-16),

and write it as

1]

u

(11-47)

t

& |
gl
2/
=]
i
e | 1]
i
Q

This, and Eq. (11-12), shows that the flight path angle remains constant. The

integral of Eq. (11-47) can be written

az _

Z = /B sin Yq | (11~48)
du u -
A second integration, along with the initial conditions, produces the solu-

tion for ballistic entry

Ei = JBr sin yilﬁ-log (11-49)

e



11-15

The ZI\ fimction provides an approximate solution for the motion and heat-

ing identical to the solution of Allen and Eggers for ballistic entry.

11-4.3. Solution For Glide Entry

For glide entry,.using Singer’s assumptioﬁ (Ref. 7), we meglect the
vertical acceleration and vertical compoment of the drag force in Chapman's
equation. Chapman's equation, along with Eé. (11-12), shows that this amounts
to considering the glide angle as megligibly small, cos v = 1 . Hence,

Eq. (11-16) is reduced to the condition for equilibrium glide -

— 1 - =2 -
T = e + (11-50)
11 c _
/B_?E('C; u
The E&I function corresponds to equilibrium gliding flight as discussed by
Singer.

11~4.4, Solution For Skip Trajectory

For skip trajectories, using Eggers, Allen, and Neice's assumption
(Ref. 8), we meglect the gravity and centrifugal force in Chapman's equation.

Thus,

— = c
u —i(ﬁd-_% - %) = - /Br EI—‘ cos> ¥ (11-51)
duduo u D

By using an average value vy for Yy on the right;hand side of this.equation,.
and using Eq. (11-12), we may integrate this and apply the initial conditions
to obtain

! c

gin v = sin Yy - —E'COSB §-logcgfa (11-52)

% u,

L

This equation gives the flight path angle in terms of the flight speed. The

7 function for skip trajectories may be obtained by combining Eqs. (11-52)



11-16

and (11-12);
iz z
Z-Z- By siny - BT L cos® 7 10 (11-53)
: du u D u,
i
This integrates to
Z _Ei u B 24
Zop = W=+ /BT sin v; log % - i ) 37 1057 L (11-54)
Cou, u, a,
o i
The EEII function gives the solution for evaluating the altitude of

a skip vehicle. In practice, since the flight path angle is small, the aver-

age value of c033 ¥ may be taken as unity.

1i-5. NUMERICAT RESULTS

Several plots of the I functions, obtained by numerically integrat-
ing the basic nonlinear equation, Eg. (11-16), for different type; of entry,
have been given in Ref. 1. The accuracy of Chapman's solution is remarkably
good for entry at small flight path angles. The discussion of these graphs
is enlightening since they provide all the interesting features for the vari-

ations of the deceleration and other physical quantities during entry.

11-5.1. Entry From a Decaying Orbit For Various Lift-to-Drag Ratios

Chapman's analysis is designed to investigate the atmospheric entry
portion of the trajectory. It is not effective for analyzing the fllght in
the near vacuum since in this case the two basic assumptions are v1olated
and the variable u no longer monotonically decreases, as shown in Chapter 13
in the develop?ent of the general theory for entry into a planetary atmosphere.
Nevertheless, the behavior of a decaying orbit can be discussed qualitatively.
For orbital flight at very high atmospheric altitude, the trajectory is a -
near-Keplerian orbit. Atmospheric drag is primarily effective near the lowest

point, at the periapsis. The reduction of the speed near the pexiapsis behaves,
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during each passage, as an impulsive braking force, lowering the apoaﬁsis

of the orbit while leaving the periapsis altitude nearly unchanged. The orbit
eventually becomes nearly circular. TFor the laét revolution; when entry is
effectively aéhieved, with vy =0 , eq (11-19) is valid. The initial condi-

tions are

wo=1, Z@) =0 , & - (11-55)
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Fig. 11-1. Value of Z Function for Ballistic Entry

From Circular Orbit
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Figure 11-1 presents the plot of 7 u versus' u for the case

CL/CD = 0 using the initial conditions (I1-535). The peak deceleration oc~-

curs at the point where u = 0.43

planetary asimosphere, the maximum deceleration varies from planet to planet.

While this value is the same for any

The maximum of Z u is 0.278 , and by Eq. (11-24), the maximum decelera-

tion for ballistic entry from circular orbit into any particular atmosphere

is 0.278/Br ,.where Br dis the characteristic value of the specified at-

mosphere.
0.9
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(b) | | I |
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Fig. 11~2. Values of Z PFunctions For a Decaying Orbit

with Various CL/C_D
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Figure 11-2 plots the results of the numerical integration of- the sim—
plified equation,.Bq. (11-19), with the initial conditions (11-55), for dii-
ferent values of /E;(CL/CD) . The plots can be used for any planetary at-
mosphere. TFor high lift-to-drag ratios, the EiI function, Eq. (11-50), is
valid. It can be seen that this equilibrium glide solution, first derived by
S&nger, is accurate up to the point where the speed is reduced to w=0.2 .

The curves approach asymptotically the dotted line representing the ZII

function which can be seen as the exact solutioan for CL/CD > o,

11-5.2. Ballistic Entry From Circular Speed With Various Initial Flight Path
‘ Angles

If the initial speed 'Ei is given arbitrgrily, for the case of ballis-

tic entry, the basic equation, Eq. (11-16), is used with the value CL/CD.= 0

and the initial conditions

Z@) =0 , %= /BF sin v, (11-56)
+ du, +

i

The integration generates a two-parameter family of solutions, with
parameters E; and YBr sin Yy o Since in the reduced equatioﬁ, the term
cos4 ¥ has to be evaluated by using Eq. (11-12), which requires specifying
separately the value of Br , extrapolation of the numerical results for
use with other planetary atmospheres is generally restricted to smdll flight
path angles,

Figure 11-3 gives the plots of ballistic entry from G; = 1 for sever-
al values of the initial flight path angle Yy - The graphs plot 30 Za
versus u . While the values of u for the peak deceleration read from
the graphs are the same for all plametary atmospheres, the ordinates present

the deceleration for the Earth. For other planets the valdes have to be

evaluated proportionally according to the specified value of Br . It can
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be seen that while generaily the peak deceleration increases with increasing
initial angle, the lowest peak deceleration occurs for an initial angle Yy
somewhere between 0° and 2° . A detailed analysis, using the exact equa-
tions developed in Chapter 13, shows that this occurs for a small entry angle
-between '0°_ and l& resulting in a minimum peak deceleration equal'to 8.2g

-for the Earth's atmosphere.

60
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EARTH ENTRY

4°
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2° N -\ A
19 Q°
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Do 0°/

IO

(a) .
! | | I

9] 0.2 0.4 0.6 0.8 1.0
| DIMENSIONLESS VELOCITY, ©

Fig. 11-3. Values of Z Functions For Ballistic Entry From

Circular Speed, at Various Initial Angles
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11-5.3. Ldifting Entry From Circular Speed With'Va;rious :Init'ial Flight Path
Aﬁéles -
- F:'Lgure. 11-4 gives the plots for entry from Ei = 1 -for several values
of the initial flight path angle, but with a positive lift-to-drag ratio,
CL/CD = 0.25. TFor the integration.,‘ the basic equation (11-16) is used with
the init;al conditions (11-56) applied to u, = 1 . 7The graphs plot 30 Zu ,

which is the deceleration at small flighﬁ path angles for the Earth's atmo-

sphere.
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Fig. 11-4. YValues of Z Function for Lifting Entry From

Circular Speed, At Various Initial Angles
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Comparing the two figures; Fig. 11-3 and Fig. 1i-4, it is seen that lifting
entry has the effect of decreasing the peak deceleration. Furthermore, for
large initial flight path angles, there appear two peak decelerations of un-
equal magnitude. ¥For low initial angles, the first peak is lower than the
second peak, while for large initial angles, the first peak is higher.

The appearance of several peak decelerations is quite definite when
the lift-to-drag ratio ié inereased, as can be seen in Fig. 11-5, TFigure 11-5
presents the plots for entry from circular speed, w, = 1 , at various ini-

i
_ tial flight path.angles, and with the value of the lift-to-drag ratio equal
to 0.5 , 0.7 amd 1.0 respectively. ]

As the lift-to-drag ratio increases, the entry trajectory becomes more

oscillatory with an oscillatory variation in the altitude (hence, also in the

7 function) inducing an oscillatory.variation in the product Zu .

11-5.4. Entry From Super Circular Speed

For entry from a high altitude orbit, the vehicle approaches the atmo-

sphere along an elliptical orbit.. Hence, the initial speed is generally

u, > 1 .

Figure 11-6 presents the plots for ballistic entry, CL/CD =0 , at
E£ = 1.4 , which is around parabolic speed when cos y is near unity, with
various initial angles.

When the initial flight path angle is small, which is the case for a
high periapsis altitude of the initial Keplerian orbit, the vehicle passes
through the sensible atmosphere for a short distance, and then exits into
the vacuum. The integration is terminated whenever 7 becomes small enough
so that the vehicle is, at that time, essentially outside the sensible atmo-
sphere. At that point, the speed hasg beer reduced from the initial speed Ei

to a final speed E} , with an exit anpgle Yy - We say that the vehicle
1
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has made ome passage through the atmosphere. Once outside the atmosphere,
the vehicle continues its course, following a Replerian orbit, with a lower
apogee. Because of the symmetry of the Keplerian orbit, the following entry

will be made at an initial speed equal to ug with an initial angle equal
1

to - We say that the entry is effected by several passages using at-

Ty

mospheric braking.

10

3QuZ = 9.20\
9 //‘-\\

'0 62 04 06 08 1O I2 1.4
DIMENSIONLESS VELOCITY, U

Fig. 11-6. Values of Z Function For Atmospheric Braking

of Nonlifting Vehicles Starling From Ei = 1.4
Values at First Maximum are Noted.
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Curve (a) in Fig. 11-6 presents an atmospheric braking -with 6 passages.

If the initial flight path angle is increased by decreasing the peri-
apsis altitude of the initjal Keplerian orbit; the first passage is effected
at lower altitude, resulting in a higher loss of speed during the passage.
This is seen in curve (b) iﬁ Fig. 11-6. The greater loss in speed decreases
the number of passages. Ultimately, a critical entry angle is reached when
the complete entry is made iﬁ one passage. This occurs for an entry angle
somewhere between curves (b) and (¢). It can be seen that before obtaining
curve (a), for initial entry at near zero initial flight path angles, Which*
corresponds to a very high periapsis altitude of the initial Keple;ian orbit,
we have the condition of orbital decay. The nurber of passages is very large.
Theoretically, it is infinite. The last passage, during which the entry is
completed, is initiated at E; =1 ; Y, = 0 , where n is the number éf
passages before effective entry.

We shall return for a more detailed discussion of these features in

Chapter 13, with the development of am exact theory for planetary entry.

11-6. EFFECT OF LIFT ON ENTRY
The physical guantities during entry, such as the deceleration, and

heating, are functioms of the 2 function which, for a prescribed entry con-
dition, depends on the 1lift-to-drag ratio. In this secﬁion, we shall examine
the effect of the flight parameter CL/CD on the deceleration, heating rate
and total heat absorbed during entry. The effect, explicitl} displayéd; is
of valuable assistance -to preliminary design and mission plamning purposes.
To some extent, this questicn has been examined in Chapter 10, in comnection

with Yaroshevskii's theory for entry into a planetary atmosphere. In this

section, the}yariables Z and u are used in connection with Chapman's

P

F
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basic equation, Eq. (11-16), which is more accurate than Yaroshevskii's basic
equation, Eq. (10-17).

First, we shall consider the case of 1lifting entry from a decaying or-
bit. That is; we shall first consider trajectories with various values of

€, /Cy for an initial condition Ei =1, v;=0 .

-11-6.1. _Effect of Lift-on Decéleration

A plot of the function 30 Z u which, by Eq. (11-24), represents ap-
proximately the vehicle deceleration for entry at small angles into the Earth's
atmosphere, is presented in Fig. 11l-7, as a function of the dimensiomnless
speed u for various lift-to—-drag ratios.
is

It is seen that the effect of the lift-to-drag ratio, C._/C

L'"p

very powerfull By increasing this flight parameter from 0 to 0.1 , the
peak deceleration is reduced from 8.38 g to. 4.9 g , while by using a neg-
ative lift-to-drag ratio equal to - 0.1 , the peak deceleration increases
to 12.8g .

For small lift-to-drag ratios, the peak deceleration occurs iﬁ the range
of the dimensionless speed near u=0.4 . When the lift-to-drag vatio in-
creases, the peak deceleration occurs at lower speed. It should be noted that, |
due to Chapman's completely nondimensionalized formulation, the .graphs apply
to any type of wvehicle, regardless of its weight, éhape or size.

Figure 11-7- plots the vehicle deceleration: If WE"congider‘the total
deceleration, as felt by the pilot, then from Eq. (11-25), this decelération
at its maximum,’ which generally occurs at small flight path angles, is

ay — — /_‘_——2
(-g—) = YBr (Z W, Y1+ (€ /C) (11-57)

max
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)
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Fig. 11-7. Effect of CL]CD on Deceleration For Entry Into
Earth's Atmosphere From a Decaying Orbit

All the peak decelerations read from Fig. 11-7 must bg_iﬁcreaseg_yy the

factor ¢/1-¥ (CL/CD)2 to yield the maximum tolal deceleration as felt by

the pilot.

+

Chapman gives the plot of Eq. (11-57) for different planetary atmospheres,

as a function of the lift~to-drag ratic (Fig. 11-8)
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Fig. 11-8, Effect of CL/CD on Maximum Deceleration For

Entry into Various Planetary Atmospheres From Decaying Orbits

Included in this Figure is a boundary representing human teolerance. It is
seen that, from the human standpoint, an entry into Mars' atmosphere can be
made with negative 1ift, while for am entry into the atmosphere of Jupiter,

a positive lift is necessary to lower the peak deceleration to an allowable

level.
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11-6.2. Effect of Lift on Heating Rate

The use of the Z function also allows a general analysis of the heat-
ing for an arbitrary type of vehicle.

As given by Eq. (11-32), the heating rate per unit area for laminar

7 12 <572

flow at any point on a body is proportional to g = Z . Hence,

as for the deceleration, the function q can be plotted versus u , for dif-
ferent values -of the lift-to-drag ratio, CL/CD (Fig. 11-9). The initial
condition used for the integratiom is alsc the one for a decaying orbit, while

the value ¥Br = 30 is the characteristic value for the Earth atmosphere.
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Fig. 11-9. Effect of CL/CD on Laminar Heating Rate for
Entry From Decaying Orbits '
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As was discussed in section 11-3, for small flight path angles, extra-
polation can be used for other planetary atmospheres.

- Let

/ (Br)
/ (Br)P

" 8ince in the basic equation for the integration of entry into the Earth atmo-

k

(11-58)

sphere, / (Br)e and (CL/CD)e enter as the preduct /(Br)e(CL/CD)e , and
since for small flight path angles, the equation is nearly independent of vy ,
and hence does not require specifying the value of /(Br)e separately, then
for entry into any planetary atmosphere, with a lift—-to-drag ratie (CL/CD)P

. and characteristic value /(Br)P , to use the same curve on Fig. 11-9, we

must have
ey CL‘ y CL
/ (Br)eﬁagae = /(BI)P(EBJP
Hence, the formula for conversion is
C C
L
Dy = kD (11-59)
D D
From the figure, the maximum of 'E is seen to occur near the value u = 0.8 .
As in the case of the deceleration, the heating rate decreases when CL/CD

is increased. The heating rate increases when negative lift is introduced.

For high lift-to-drag ratios, the 7 function tends to the Z

II
funetion as given by Eg. (11-50). Hence, when Ci?CD >1
1l 5
= 2 9 — 3 .
q=z2g%-0 f-u (11-60)

Accordiang to this approximation, Qpay OCCULS when

T = /% = 0.816 ' (11.61)
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and has the value

- 2

Ynax ~ 3/§(§r)1/4 FE;7§E

(11-62)

11-6.3. Effect of the Initial Flight Path Angle

The initial flight path angle also has a strong effect on the deceler-
ation and heating. It influences other kinematic quantities such as the
total range and the time of flight as well. We shall consider the effect of

—_— -

the initial flight path angle for entries from circular speed, u, = 1,

with various lift-to-drag ratios.
Fig;re 11-10 plots the maximum deceleration experienced during an entry
from circular speed of a nonlifting vehicle, CL/CD =0 , into the Earth's
atmosphere, as a function of the initial flight path angle, LA The curves
can be applied to other planets if the abscissa is regarded as being - kYi s
and if the ordinate scale is multiplied by kge/gP
It is seen from the figure that the deceleration first slightly de-
creases to a value of 8.2g for an initjal angle near - 1° , and then in-
creases as - Y, inecreases. The dotted line plots the approximation of
Allen and Eggers (Ref. 6). This corresponds to the function Ei as given
by Eq. (11-49). Hence, using this solution in Eq. (11-24), we have, with

w, =1
1

dv _ \ -2 — .
- dt/g) = Br sin Y;u log u _(11 63)
According to this approximate expression, the maximum deceleration occurs at

= 0.606 (11-64)

u=

&1 |

and has a value of
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av Br sin v . .
~ (‘&'Efg) = - RN PeE {11-65)
™ax

Figure 11-~11 plots the maximum of the dimensiomless heéting rate, 'E

given hy Lq. (%1*33) for laminar flow, and the dimensionless total heat ab-

Q

asorbed,

s given by the integral (11-41).

*
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Fig. 11-11, Effect of the Initial Flight Path Angle on Maximum

Laminar Heating Rate and Total Heat Absorbed During Entry

The dotted lines are the plots using Allen and Eggers' approximate solution,
the Ei function as given by Eq. (11-49), Using this solution in.

Eq. (11-33), we have

1
2

2 3=22%%= //Ersin (-v) 5 log 2 1 (11-66)

AR

According to this approximate formula, the maximum of q occurs at
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u= é1/6 = (0.8465 (11-67)
Thié'gives the maximum value for q
q (Br) 1 sin (} ) (11-68)
qma:zc ;]_ / Y

The function E} used in the integral (11-41), with an average value for

cos v , yields the dimemsionless heat absorbed, 6- , from Ei =1 to

e
il
<

. 1 fl wdu .
1/4 22— /= 1/2 1/ 2— -
(Br)™ TcosTy /sin(~ Yi) 0 log™’ “(1/u) (Sr) cos v / 2sin(~ Yi)

(11-69)

It is seen that the solution by Allen and Eggers for heat transfer in this
case is quite accurate for initial flight path angles greater thamn about 2° .
Finally, Figs. 11-12 and 11-13 show the influence of the lift-to-drag
ratio on the heating during entry at nonzero initial angles. ‘
Figure 11-12 plots the maximum of the dimensionless heating rate,
E;ax s, versus the initial flight path angle, Y; e for several values of
the 1ift;to-drag ratio, CL/cD . TFor each Y; s the maximum of ¢ decreases
as CL/CD increases. _
Figure 11-13 plots the dimensionless total heat absorbed, Q ~, versus
the initial-flight path angle for different wvalues of the lift—to-drag ratio.

It is also seen that increasing the lift—-to-drag ratio has the effect of de-

creaging the to%al heat absorbed for a prescribed initial £light path angle.
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CHAPTER 12

THE ENTRY CORRIDOR

12-1. INTRODUCTION

In Chapter 5, Ehe-anal&sis_of the entry into the atmosphere of a vehi—
cie in‘orﬁit waé prege;téd. In the vacuum;of space, any_maneuver.for chang-
ing orbit must be effected by the application of power. After the last
thrusting maneuver has been carried out, the descending vehicle is in free -~
flight and approaches the atmosphere on a Keplerian orbit. When the aerody-
namic force becomes sensible, the vehicle begins to deviate f;om its Kepler—
ian orbit. This marks the beginning of the atmq;pheric entry phase.

At the jnitial altitude where %t is considered that the entr§ phase
begins, the vehicle possesses a certain velocity %i ,» of magnitude Vi
gnd directed at an angle Yy (Fig. 12-1). The entry trajectory, for any
specified vehicle, depends on tﬂese entry conditions. They can be evaluated
from the elements of the approaching Keplerian orbit if the altitude for
entry is given.

In outer space, a Keplerian orbit is completely defined by the position
vector T and the velececity vector % at any instant t . In the plame of
motion, with the direction of T as the reference direction, the three
scalar quanfities r , V and v suffice to specify the orbit. 1Im the
following, we shall consider three particular poeitions for defihing.éhe ap-
proaching Keplerian orbit:

i/ The first point is an arbitrary point on the orbit, at very high al-
titude where the vehicle is still in the vacuum (Fig. 12-1). Thenquantities

associated with this polnt are Ty o Vl and Y1



12-2

CONIC PERIAPSIS

T Fig. 12-1. Geometry of the Entry Trajectory

ii/ The second point is the entry point and the quantities associated
with this point are o Vi and Yy - Theoretically, the definition of
this point involves a certain degree of arbitrariness. One may counsider the
distance r, as the distance to the top of the sensible atmosphere. Another
definition of the entry point is that point where the deceleration due to at-
mospheric force has reached a certain fraction, sa& cne per cent, of: the local
gravitational force so that the vehicle has just begun its n?nKeplerian tra-
jectory. Obviously, in this case the corresponding initial distance-.ri de-
pends on the drag coefficient SCDfm of the vehicle, the initial speed V

i
and the initial flight path angle Y; - We shall return to this question in

Chapter 13. Whatever the definition used, for all practical computation, the

entry point will be considered the last point on the approabhing Keplerian orbit.
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iii/ The third point to be used for the definition of the Keplerian
trajectory is its pericenter. This point is the lowest point on the ncminal
Keplerian trajectory. It is the pericenter of the conic trajectory which
the vehicle would have followed had there been no atmosphere around the
planet. In Ehe case where the Keplerian orbit intersects the planet, the
trajectory is extended to lead to a pericenter inside the planet. The quan-
tities’assoéiated with this point are rP s VP and TP =0 .,

The entry speed from a close orbit is near circular speed at the entry

-~

altitude, while entry from a high altitude orbit is effected at supercircular
speed. 1In particular, for a moon flight return to the Earth's atmosphere,
the entry speed is near parabolic speed. In the case of an entry following
an interplanetary flight, the vehicle enters the planetary atmosphere at hyper-
bolie speed. For a safe recovery of a balligtic vehicle, one must select £he
entry conditions, the speed Vi and the flight path angle Yi at the disgtance
T such that the subsequent trajectory generates deceleration and heating
conditions within acceptable limits. For a lifting hypervelocity vehicle, the
entry position must alsc be selected such that, near the end of the atmospher-—
ic entry trajectory, the vehicle is in the correct presentation ir the posi-
tion vector and the velocity vector to begin the last aerodynamic and thrust-
ing maneuver phase for making a safe approach and landing at the prgviously
selected airfield.

While thrusting maneuvers in space can always be programmed to bring the
vehicle to a prescribed entry condition, the resulting fuel consumption may
become prohibitive. Savings in fuel consumption will increase the useful pay-

load, cargo, life support equipment and manpower omboard the vehicle, thus

providing more flexibility in mission planning.
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On the other hand, there exist constraints on the entry condition as
illustrated in Fig. 12-2. Let us assume that a physical constraint, say the
maximum deceleration, has been adyvanced in the selection of an entry trajec-
tory. This is ohviouély one of the constraints in manned flights. TFor a
given vehicle, with a certain ballistic coefficient, using a prescribed 1ifi-
to-drag ratio, all apﬁroach.orbits, having a prescribed periapsis speeﬁ V§
aé the fictitious pericenter, can be divided into two families. In one
family, the resulting atmospheric entry trajectories gemerate a peak deceler-
ation exceeding the prescribed maximum deceleration. The boundary of this )
family will be referred to as the undershoot boundary and the resulting peri-
apsis distance is rp ‘(Fig. 12-2). In general an undershoot trajectory,

un

that is, a trajectory leading to an unacceptable peak deceleration, has its

periapsis distance less than this minimum acceptable periapsis distance.

OVERSHOOT UNDERSHOOT

av b
et e
........

gt .«

Fig. 12-2, The Entry Corridor
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On the other hand, among the trajectbries of the remaining family of
Keplerian orbits, not all can be considered as entry trajectories. This is
because if the periapsis distance of the nominal Keplerian conic considered
'is too 1arge; the atmospheric force encountered is too.small and after a
short flight inside the atmosphere the vehicle will asscape into space and
entry is not completed during the first pass. The boundary of these escaping
trajectories is called the overshoot boundary and the resulting periapsis
distance is r . In general, an overshoot trajectory, that is, a trajec-

ov -
tory leading to an exit into space, has a periapsis distance larger than this

maximum periapsis distance.
The portions representing excessive overshoot and undersShoot in the
figure are excluded as not representing the intended maneuver. This leads

to a narrow corridor through which the vehicle must be guided. The.differ-

ence Ah =r - T will be referred to as the corridor width. For a
P Pov un

successful entry during the first pass, within the limit of the physical con-
straint imposed upon the trajectory, thé vehicle must be guided during its
Keplerian phase into this narrow corridor. ¥light from circular or elliptical
orbit is somewhat tolerant of guidance errors. An undershoot trajectory can
be readily corrected by application of a thrust at a large distance before
entry. An overshoot trajectory can be similarly corrected. If necessary,
one can use an aerodynamic maneuver during the skipping phase to have a cor-
rect presentation on the next return.

In contrast, entry at hyperbolic speed from outer space is unforgiving
of guidance errors., TFor an undershoot trajectory, because of the high ap-

proach speed, thrusting correction may be prohibitive because of the fuel com-

sumption, and an insufficiently corrected undershoot trajectory may cause
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destruction of the yehicle during entry. On the.other hand, an gyvershoot
trajectory, if inadeqﬁately corre;ted, may result in a hyperbolic departure
leading the vehicle into a homeless e%it intg space, or a highly elliptic
ejection prolonging dangerously the lapse timé until the next return.

The concept of an entry corridor was first formulated by Chapman (Ref. ;).
Before we continue with the presentation of this outstanding formulation, one
fundamental comment is in order.

The introductory notion given above is related to a prescribed vehicle,

with a given ballistic coefficient following different Keplerian trajectories,
all leading éo the same fictitious periapsis speed VP . More clearly, for

a given ballistic coefficient, with the same conic periapsis speed .VP , Tor
the entry to be accomplished during the first pass, within the prescribed maxi-

mum deceleration, the periapsis distance of the approaching Keplerian orbit

should be aimed betwszen r and t .
un Pov

A novel feature introduced in Chapman's original paper (Ref. 1), is a
dimensionless periapsis parameter combining certain characteristics of the
vehicle with certain quantities associated with the conic pericenter. With
this parameter, the.analysis can be applied to a vehicle of arbitrary weight,

shape and size, entering an arbitrary planetary atmosphere.

12-2. BASIC DIFFERENTIAI EQUATIONS

Chapman developed his theory of the entry corridor for® small flight
path éﬁgles. %ence, the fundamental second-order nonlinear differeﬁtial
equation to be used is Eq. (11-19) written as

. -2 . - c .
e EI‘ Q2-1)
) N .

_ 2% @
u d__g - Qg% -
du du

SIS
!
=
1
1
w0
3
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where

E-='V cos ¥
- (12~-2)

- pSCD/;f_
2="m /8"

The integration of the equation requires two initial conditions on 2
= dZ ] - _
and Z = -—— at the initial time, u = ;o
du

Z@) = Z, , z ) =T, (12-3) -

_t
To evaluate " Z . , we use Eq. (11-12) reproduced here for convenience

|
1
e | |l

= /Br sin y (12-4)

Hence, the initial conditions dre

z
TN = o oy o i y .
Z{u.) = Zi s Z (ui) = = + /Bri sin v, .(12—5)
i .
The kinematic elements at entry are T, V. and Yy oo Hence, we

i

can form the dimensionless entry speed ﬁ; = Vi/¢/E;;; . Then ;i = V; cos Y.
Ys and the additional prescribed value Ei will provide sufficient initial
conditions for the integration of the nomlinear equation (12-1). Subsequently,
the flight path angle is given by Eq. (12-4) and the deceleration, ;pe heat-
ing rate or-any other physical quantity at any instant can be obtained from

Z , uv , and Yy as has been presented in Chapter 1l.

Now, since Ei can be taken as apprcéimétely zero, or analytiecally by
uging the first-order seclutions, it is seen that only ﬁ; and Yy need be
prescribed. Then, the analysis of the deceleration, or whatever physical

quantity 1s considered, determines whether or not the trajectory is an under-—

shoot trajectory while the corresponding Z function is used to assess if a
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trajectory is a skip trajectory, E£ = Zi » or a descending trajectory,
Z > f; . Several hundred solutioms for different entry ttajectories were

camp@ted by Chapman and the results presented in his report (Ref. 1). A very
" convenient parameter, the éeriapsis parameter, was intréduced to present the
results in a cbmpletely dimensionless form applicable to any type of vehicle,
of arbitrary weight, shape and size, entering an arbitrary planetary atmo-

sphere.

12-3, THE PERIAPSIS PARAMETER -
R It was explained in C?apter 11 that the use of Chapman's varigbles F3
andiﬁﬁj has the advantage of eliminating the specification of the entry alti-
tude hi' and the ballistic coefficient SCD/m . The characteristics of

the planet's atmosphere enter the basic equation (12~1) in the dim;nsionless
parameter VBr . From Eq. (12-5), it follows that, for shallow entry at a
high altitude, where the initial values of Z are negligible compared to sub-

sequent values during entry, the second initial condition can be written as

]

Z (@) = JBx, v, (12-6)

The initial flight path angle v; should be taken at the beginning of
the sensible atmosphere. Theoretically, from Fig. 12-1, it is seen that, once
the Keplerian approach orbit is known, this angle -Yi can be eYaluéted for
any distance r, chosen as the radius of the sensible atmos?here. But this
distance T, is not well-defined. -From a physical staﬁdpoint, if thé entry
altitude is defined as~thé altitude where gerodynamic force begins to take ef-
fect, then this altitude obviously depends on the drag parameter SCD/m , the

entry speed Vi and the aﬁgle Yi itself. For very shallow trajectories

grazing the edge of the atmosphere, a precise evaluation of Y is therefore
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cumbersome.

A convenient parameter for the analysis of the entry corridor, the peri-
apsis parameter, was introduced by Chapman. This parameter is associated
with the hypothetical periapsis distance of the apfroadh.conic orbit (Fig. 12-1).
The relation between this periapsis distance rP » and the elements r |,
V and vy at any arbitrary point on ;he Keplerian orbit was given in Chapter 3,

Eq. (3-70). This equation can be rewritten in the curreant notation as

B 1-/F -+ 7%20 -V sin’ y 12-7y
* 2-7°2 :
where,
e — " (12-8)
/g—f ces y

For shallow entries for which the flight path angle is small,

%‘2(2-%"2) sin2~(<<l
@2 -1?

and Eq. (12-7) for supercircular entries (Viz - 1) > 0 , with the arbitrary

point taken as the entry point, can be approximated as

=2 .2
T V.” sin” v,
_E:l__._l—_l
Ty 27,7 - 1)
Hence, .
r, -.x ..?;%.Yiz .
P “(12-9)

T, o=
. i ZCYi - 1)

Chapman introduced a periapsis parameter defined as

5 /% '
=2 48 /_ P -
5 o 3 - ~(12-10)

¥
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where rp is the hypothetical periapsis distance and pP is the atmo-
spheric density evaluated at this distance. TFor an atmosphere which is

strictly exponential between the initial point and the pericenter,

-B(hp - hi) B(r:.L - rp)

pP = p,e =p,e (12-11)

On the other hand, from the definition (12-2) of the Z function

p.S5C T,
= i D i—
A =R L .l — —_
: ; / B, u, (12 12)-
so that,
Z £ Bz, - 1)
- 1 -
F =% /P, P (12-13)
P = r.
u, i
i
. -2 =2 2 = 2 .
For shallow entries, u, = V. cos vy, =V, , and the ratio r_/r, can
i i i p i

be set equal to unity, consistent with the approximation made in deriving

Eq. (12-9). Hence, the approximate expression for F  is

s 2
ViG/ BTy )

z,  26%7-1) : .
F =—¢e * (12-14)
V

This is the form given by Chapman (Ref. 1). For the case of shallow entry

9 2(?% - 1) A
(_/BiriYi) = 2 Log gét-FP) . (12-15)
1 i ..

That is, /Biri Y; is a2 function only of Vi s Zi and FP . Consequent-—
_ 1 . -

1y, the two initial conditiomns Zi and Zi = Biri Y; s imposed gt- u,

on the basic nonlinear second-order differemtial equation, Eq. (12-1), can be

replaced by the equivalent two, E; and FP , imposed at ﬁi

To explain the usefulness and penerality of the periapsis parameter

FP in a clear and satisfactory way, let us consider the case of ballistic
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entry, G /C) =0 , at parabolic speed, ﬁg = 1.4 , into the Earth's atmo-

sphere. The basic equation to be integrated is

. 25 = =2
Rl (12-16)
d du wu u Z
The initjal conditions required for the integration are
— — — — — -—'t ) -
u, = v, = 1.4 , Z(ui) =7z, , Zi = Biri Yy (12-17)

A nonzero value E& is obtained analytically as explained in Chapman's

Ref. 2, while, instead of 'Biri Y; as a scauning parameter to %enerate
different entry trajectories, Fp is used as an arbitrary scanning param-
eter and Biri Y; is obtained from Eq. (12-15) to be used in the second
initial condition (12-17). TFor each parabolic entry trajectory into the
Earth's atmosphere, the peak deceleration is plotted versus the correspond-
ing value F, in Fig. 12-3. The curve ends at the value Fp = 0.06 . For
FP smaller than this value, the vehicle will pass through the atmosphere,
exit into space, and thenm return for at least a second pass before the entry
is completed. Hence, this value of FP corresponds to the overshoot bound-
ary for single-pass entries. Now, let us assume that 10 g is the maximum
deceleration allowed for this particular case of parabolic entry into the
Earth's atmosphere. From the graph, the corresponding value fof Ep is

F =0.31 . ﬁence, for single-pass entries limited at 10 g , tﬁé range

P
for T is
p

' 0.06 < F & 0.31

The result thus obtained is independent of the entry vehicle. In.practice,
when the drag parameter of the vehicle and the characteristics of the atmo-

sphere have been specified, yith Fp = 0.06 , _and FP = 0.31 , the equation
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26

0.01 0.10 | To)

Fig. 12-3. Maximum Deceleration During
Ballistic Parabolic Entry into the Earth's Atmosphere

(12-10) can be solved for a maximum and a minimum value of the periapsis dis-~
tance. For a successful entry, the parabolic returning trajectory should be

aimed so thdt its periapsis distance is between these limits.
In general, let us consider the ratio p_ /p of the values of the
un “ov

T

atmospheric density at the two limiting periapsis distances

p. - - )

Pun B(hov hun) "(Fpm/SCD)un rov -
. = TS - - (12-18)
P P D ov un -

POV
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The difference A.h.P = hbv - h_un between the two conic periapsis alti-

tudes is defined as the corridor width as illustrated in Fig. 12-2, This

difference is small, rov/r_un = 1 , so that the expression for the corridor

width is approximately

] (F m/SC_).~
1 P D un
A = = Log (12-19)
p B (Fpm/SCD)ov

For the special case wherein the ballistic coefficient SCD/m is the

same along the two boundaries, we have
FP
7 L + (12-20)

pOV‘

=1
Ahp =3 Log

For the case considered above, for the Earth's atmosphere with
1/g = 7,162 m , the corridor width is Ah,P = 7,162 x Log 5.16 = 11,746 m
From equation (12-20), it is apparent that, if the ballistic coefficient ‘
is the sazme for the two boundaries, a condition which is especially true
when there is no deformation of the entry wvehicle, then the corridgr width
for a given exponential atmosphere, (constant 8), depends only on ;he ratio

F /F . Hence, the corridor width, for a prescribed v, s 1s the same
pUIl PDV +

for all vehicles. However, the periapsis altitudes of the corridor bound-

aries, h and bk are functions of the ballistic coefficient through
un ov

Eg. (12-10).

12-4. CHAPMAN'S RESULTS FOR THE ENTRY CORRIDOR

To ease the discussion, Fig. 12-3 has been presented for parabolic
entry into the Earth's atmosphere. With the purpose of presenting his re-~
sults in a completeiy dimensionless form, applicable to any arbifrary vehicle

regardless of its weight, size and shape, entering an arbitrary planetary



12-14

atmosphere, Chapman used a normalization technique.

From Eq. (11-25) of Chapter 11, the dimensionless deceleration for a

shallow entry is ) p 3
_ % =/Brzu 1+ & (12-21)
: . D

Now, in integrating Eg. (12-1), instead of specifying the two values
YBr and (CL/CD) separately, one can specify only the single parameter
V8L (_CL/CD) . Then, for any specified planetary atmosphere (i.e., given Vpr

the actual lift-to-drag ratio flown can be deduced. Next, let us assume that

for a prescribed value A = VBr (CL/CD) , and for a certain prescribed condi-

tion on entry, a function Z has been generated with the corresponding value

u . Then we can evaluate the deceleration for the case of the Earth (subscript

e ) and the deceleration for the case of an arbitrary planet (no subscript) as
a . A - 2_\
e A
£ = /1 + :
N / o (),
) 2

A
/1t

(Br)e
= /Br

|
& |

(12-22)

o |
o]
|

Since A is prescribed for the computation of the Z function, we can

construct the dimensionless deceleration function

/ 2
¢=302u /1+g5m (12-23)

Since for the Earth's atmosphere /(8r) = 30" , it is seen that this
funetion is_simfly the dimenisionless deceleration, in Earth g's ,-for entry
into the Earth's atmosphere. From the Eqs. (12-22) and (12-23), it is seen

that, through the use of the dimensionless universal function z s all the

decelerations reach their respective maximum values at the same values for 2

and u . Hence, if the function G is used for the diagram, -G~ ver-
max - max

sus Fp , for different values of the dimensionless entry speed Vi , it

represents the point of peak deceleration for entry of any arbitrary vehicle
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into any arbitrary planetary atmosphetre. The diagram can be used directly
for evaluation of the entry corridor for entry into the Earth's atmosphere.
For “entry into any other planetary atmosphere, from Eq. (12-22), the deceler~

ation normalized with respect to the earth gravity will be

2
a2 - gJB? Z ; v 1+ g—r'
8, .8,
or, in terms of G
}\2 -
g._ = g_ Br G x . (12-24)
. Ce e /(8r), A K 22
900 ) .
In the notation of Chapman
£ - gy JB—E ‘= v// (Br)® . - (12—2:5)
e / (Br) .
e
this is -
C. 2
1+
=% =g JGD_C D (12-26)
g < ° ¢ CL 2
1+ [/ gl
/e
Hence, for any other planetary entry, with the comstraint F;max = aI;nax] 8a
prescribed, Eg. (12-26) must be used to evaluate the corresponding ¢

max

before referring to the diagram G versus F_ .
max P

The rcsults of Chapman's investigation are presented in Figs. 12-4,
12-5 and 12-6 for ballistic entry, CL/CD =0 , for different dimensionless

entry speeds.

Figure 12-4 plots the dimensionless maximm deceleration Emax versus

the periapsis parameter FP .
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Fig., 12-4, Maximum Deceleration for Ballistic

Entry at Supercircular Speed

¥or entry into the Farth's atmosphere, the maximum deceleration in Earth's
g's 1is given directly by the ordinate. As mentioned above, for pérabolic

entry, ﬁ; = 1.4 , the overshoet boundary corresponds to F = 0.06 ,
ov

while, if the maximum deceleration is limited to 10 g , the correéponding

valﬁe for Fp is F = 0.31 . Consider now a parabolic entry into
another planetary atm22§here, for example, the atmosphere of Jupiter. The
value for F iz the same for any planet. But to have the same value
for Fp s :;d hence the same a;ax =10 , since for JQpiter

un



12-17

8,/ (ﬁr® =5.3

eration equal to an unrealistiec 53 Earth g's . With this maximm deceler-

, from Eq. (12-26) one.must have the maximum allowable decel-

ation, for Jupiter we take 1/ = 18,288 n ; and by Eq. (12-20) the corridor
width on Jupiter is BhP = 29,992 m ;
More reaiistically; if we want to keep the maéimum deceleration for bal-
listic entry into Jupiter's atmosphere at 10 Earth g's ; the corresponding
Eﬁax would be E;ax = 16/5.3 = 1.8 . But the smallest possible maximum
deceleration for a nonlifting vehicle entering any planeta?y atmosphere corte—
spoads Lo aﬁax = 6.5 for a hyperﬁolic entry, ?& = 1,48 , as may be seen 55
Fig, 12-4, Hencé, for entry into Jupiter's atmosphere the 10 Eaéth g cor-
ridor width would be nomexistent. The smallest value of the peak deceleration
for nonlifting entry into Jupiter's atmosphere is € = 6.5 x 5.3 = 34 Earth g's .
Figure 12-5 plots the dimensionless heating rate aﬁax versus FP for
ballistic entry at differeat speeds, while Fig. 12-6 plots the dimensionless
total heat absorbed Q wversus FP" . The definitions of q and @i are
gi&en in Egs. (11-33) and (11-41) in Chapter 11.
The results are presented for the entry of a nonlifting vehicle. Before
discussing the influence of aercdynamic 1ift om the corridor boundaries we
conclude this section with some remarks of interest.
First, the relatioﬁship {(12-14) bétweeﬁ )f§;;; Yy and FP %s derived
based on the assumption of small entry flight path angles such that
7.2 - ?iz) sin?.Yi

i
— 2 2
(v:.L - 1)

<< 1 -(12-27)

Hence, it will require that Vi is not near the circular speed. The assump-

tion is good if
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Since Yi is the order of 0.1 , the use of FP as a similarity parameter

for entry into different planetary atmospheres is restricted to about

6:2 >1.1 ; or V. > 1.05
i i

Next, although theoretically a skip trajectory is a tr;jectory:Ieading
to Z = E; = 0, , in constructipg the diagrams Chapman qualified an over-
shoot trajectory as a skip trajectory such that the e?it speed exceeds the
circular speed, that is, a trajectory such that 5}‘3.1 at the exit point.

Finally, an interesting, and possibly unexpected, result for thé entry

of nonlifting vehicles, is exhibited by the curves for maximum deceleration
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in Fig. 12-4, and also by the curves for maximum rate of laminar heating in
Fig. 12-5. The absolute minimum value of aﬁax , and the absoluté minimum
value of Eﬁax do not occur at the lowest supercircular ent?y gpeed as might
be expected. The absolute minimum value of E;ax occurg for entry.éf slightly
hyperbolic speed and the absolute minimum of .Eﬁax -occurs for entry at
slightly supercircular speed.

A cross plot is presented im Fig. 12-7. From this figure, it is seen

that the lowest possible maximum deceleration for ballistic entry into a
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planetary atmosphere is experienced when entering.at the hypérbolic speed

Fi = 1.48 and aiming at a periapsis parameter of FP = 0,12 , This results
in a-minimum G = 6.5 as compared to G___ = 8.3 for circular orbital

max max
decay. The lowest possible maximum heating rate for ballistic entry occurs
at vV, = 1,12 and at F_= 0.018 . This results in a minimum Em "= 0.19
i D ax

as compared to Emax = 0.22 Ffor circular orbital decay. An emlightening
physical reason to explain the phenomena has been provided by Chapman in

Ref- lo
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Also, as seen in Fig. 12-6, the normalized curves for the total heat
absorbed during ballistic entry do not exhibit minimz. For any entry speed,
the lowest possible total heat is absorbed by entering at the largest possible
value of T% which, as shown by Eq. (12-15) and Fig. 12-4, corresponds to

the steepest possible descent and to the greatest posgible deceleration.

12-5. INFLUENCE OF AERODYNAMIC LIFT ON THE CORRIDOR BOUNDARIES

One of the most interesting aspects of hypersonic f£light is the use of
the lifting capability of hypervelocity vehicles to effect maneuvers in an
advantageous way. A complete analysis of the modulation of the 1lift, and pos-
sibly the bank angle, as functions of time, to achieve the maximization of a
certain quantity, called the performance index, would require the tools of

modern optimization theory.

Since here we are mainly concerned.with entry at constant angle-of-attack,
or equivalently constant lift-to-drag ratio, we shall restrict ourselves to
the discussion of the lift-to-drag ratio, considered as a parameter, and its in-
fluence on the boundaries of the entry corridor.

Referring to Fig. 12-2, let us assume that the overshoot boundary and
the undershoot boundary correspond to ballistic entry, CL/CD =0 , of a cer-
tain vehicle., Now, if for a range of angle .of attack, the vehicle can gener-
ate lifting forces, then it is reasonable to infer that, by using negative
lift, the 1lifting vehicle, étarting'on the trajectory of the ballistic over-
shoot boundary, can be curved inward holding the trajectory inside the aimo-
sphere. Thus, this incoming Keplerian trajectory is no longer an overshoot
trajectory. That is to say, with 1ifting capability the overshoot boundary
for the lifting vehicle will be higher than that of the ballistic vehicle,

providing a larger r .
ov
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Similarly, for the undershoot boundary, positive 1ift can be used to
decrease the flight path angle and reduce the peak deceleration. The ulti-
mate..effect is to lower the lifting vehicle's undershoot boundary, providing

a lower r .
Pun

Through these heuristic considerations, it may be concluéed that the
use of aerodynamic lift can have the effect of increasing the corridor width.

The actual mechanism is more complicated because of the coupling between the

lift-to-drag ratio, CL/CD , and the drag coefficient QD . We shall study
in some detail this coupling effect in the. following sectioms. .

12-5.1. Overshoot Boundary With Lift

If a vehicle entered the atmosphere along an overshoot trajectory it
would pass through the atmosphere and exit into space at a point where

2 = 23

=00 . 1If the exit gpeed is lérge but less than the escape speed,
the vehicle will retura to the atmosphere at least another time. If the exit
speed is small, the vehicle will follow a free flight trajectory oquide the
atmosphere for a short distance and reenter the atmosphere to complete the
entry. For small f£light pa£h angles, with small and moderate lift-to-—drag
ratios, if the exit speed is less than the local circular speed the vehicle
will stay near the edge of the sensible atmosphere'before finally descending.
Hence, we can use Chapman's definition in considering the overshoot‘ﬁouﬁdary

as the trajectory such that the exit speed is the circular speed, that is,-

ﬁf =1 . Using_this definition, Chapman computed the overshoot boundaries

H

for different lift-to-drag ratios using the entry speed ﬁi as the scanning
parameter. His results are presented in Fig. 12-8. The figure plots the

. ] as &
parameter /(Br)B (CL/CD) versus the periapsis parameter .FP for -differen

values of the initial euntry speed.
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As anticipated, the curves in the figure show that, relative to the

case of C;/C, =0 , for each entry speed f; > the overshoot boundary- is

extended upward, that is to lower Fp (hence to lower pP ), if negétive
lift (lift directed toward the center of the plamet) is employed. This is

rigorously true when, while varying CL/CD » we can maintain GC_ constant.

D
But, for a given vehicle aerodynamic configuration, when we vary the angle-of-

attack both the lift and the drag coefficients vary. That is, there exists a



12-24

relationship between the 1ift and the drag coefficients, or, referring to
the drag polar, there exists a relationship between the lift-to-drag ratio
and the drag coefficient.

Typical relationships between CL/CD and CD using Newtonian theory
for hypersonic flow over a flat plate are presented in Fig. 12-9 taken from
Chapman's Ref, 1. Along each drag polar, the lift-to~drag ratio increases
from the value zero at 0° angle~of-attack to a maximum, then decreases to
zero at 90° angle of attack when the drag coefficient reaches its maximum

value. For each lift-to-drag ratio, there exist two wvalues of CD. » One
corresponds to low drag f£light an@ one corresponds to high drag flight. Since
high drag minimizes the aerodynamic heating, the high drag portion is used

in connection with the attempt to widen the entry corridor. But the use of
this portion will have a reverse effect. This can be seen in the Figs. 12;8

and 12-9 and from the definition (12-10) of the periapsis parameter written

as

(12-28)

':10 [th:l
¥l
=

With a higher negative lift-to-drag ratio, the periapsis parameter FP

decreases. But this does not induce automatically a decrease in p , and
ov

hence an increase in , since the drag coefficient CD also decreases.
ov

In general, let (F_ , CD ) and F_ , Cp ) be the corredponding values
P1 1 Py 2 :

for F  and C. for two entries with lift-to-drag ratios C. /C and
P D Ll Dy

G, /CD . Since r =1 s

2 Y2 P Py
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(Fpljcnl) 8(h, - hy)
e M R
&, 76

(12-29)

The change in the periapsis altitude of the overshoot boundary, when we

change from C to C ,» 1s

D D -
! 2 . @, fey)
-1 P ¥
h, - h, =Ah = Log 7 G~ (12-30)
2 hl Poy B (FP2/CD2) . ]

The extension is upward, if and ecaly if

1

o, %o
i (12-31)
CD CD .

1 2
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A simple graphical eyaluation of parabolic entry, ﬁl =1.4 on

Fig. 12-8, using the (BL/CD) " = 4 drag polar of Fig. 12-9, shows that,

max

- compared with ballistic entry, C./C, =0 , between CL/CD =0 and

LD
CL/CD = - 0.5 the extension of the overshoot boundary is upward, reaching
a maximum of 6 miles for CL/CD =~ 0.5 . 3Between CL/qD = - 0.5 and
CL/CD = - 4 the extension of the overshoot boundary is downward producing

a maximum narrowing of the corridor of 7 miles when CL/GD =-4 .

In practice, a more effective method of extending the overshoot bound-

ary would be to deploy a large, light, high-drag device to increase the drag

coefficient CD while keeping CL =0 ., h

In addition to specifying the overshoot boundary ﬁ} =1 , it is eof
interest for hyperbolic entry to specify the nomreturn boundary V% = Y2 .
Both boundaries are illustrated in Fig. 12-10 for two hyperbolic entries ét
ﬁi = 1.6 "and ﬁ} = 2.0 respectively. TFor moderate and high negative 1ift-
to-drag ratios, JFKEET;‘(CL/CD) < - 0.05 , the difference between‘the over-—

shoot boundary and the nonreturn boundary is indistinguishable on this figure.

12-5.2, TUndershoot Boundary With Lift

For a prescribed entry speed Vi , a deceleration-limited umdershoot
boundary depends on the value Gmax prescribed and the constant lift-to-drag
ratio, CL/CD , selected. As in the casé of the overshoot boundary, an
udershoot boundary can be extended downward, hence widening the entry cor-
ridor, by é proper selection of the comstant 1ift~to-drag'ra;io. It.is ob-
vious that a bettér way to achieve an optimum extension of the undershoot
boundary is to modulate the ratio CL/CD as a funetion.of time. A rigorogs
treatment of the problem would require the tools of modern optimiéation

theory. Also a new definition of the Z function is in order since as CL/Cﬁ"



12-27

¥,=1 lovershoot boundory)

—— ‘|Z,= /2 (nonrefurn boundory)
s= Hyperbolic en?

"-Ex> N3 Ellrptic exit

d | E— 1 1 | I 2 | | N L } - R |
ooz ol \) \4\\\ S .
- Q:h}\ . Perigee paramerer
"‘/
- & o e ]
4 2(% B
% i
o -
T
& ,
7
16 Single-pass entry
20
2 -
-3 - <

Fig. 12-10. Oyershoot Boundary and Nonreturm Boundary

for Hyperbolic Entry

varies, the coefficient CD , which is contained expliecitly im Z , also .
varies.

.Lees,'Hartwig and Cohen (Ref. 3) have studied the effect of the modula-
tion of CL/CD , under the assumption of comstant C.D , on the maximum de—
celeration during entry. They show that by modulating CL[CD in a m@er
such that large CL/CJ) values are employed in the first portion of the entry
trajectory where the longitudinal deceleration is small, the resuitant deceler=-

ation can build up to its maximum under conditioms where the transverse
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component is dominant. Then, by maintaining this constant resultant value

G through decreasing the transverse component while increasing the longi-
tudinal component, the entry with modulated 1lift can be completed without re-
quiring large negative CL/CD at any stage. In this way, the undershoot
bowndary for modulated CL/CD can be extended considerably from the value
fdr constant CL/CD s P;ovide& the value of GLJCD at entry is relatively
high. They found that the ratio of Gmax for modulated Lift to Gmax for
constant 1ift was essentially independent of Vi and Yy oo and dependent

-

only on the initial value of CL[CD at entry. Their result is presented in

Fig., 12-11.
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On the other hand, Chapman studied the effect of constant CL/CD on

the undershoot boundary for deceleration-limited entry. A typical diagram

showing his results is presented in Fig. 12-12 for parabolic entry, Vi = 1.4 .,

The diagram plots the normalized maximum deceleration, G , Versus 10310 FP
From the figure, it is apparent that an increase in CL/CD up to about 2

can extend considerably the undershoot boundary for a given Gmax since it

leads to higher FP s hence lower rP for constant QD .
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Fig. 12-12. Normalized Maximum Deceleration
for Various Lift-to-Drag Ratio Entries at Parabolic Speed

It should be noted that a constant high.lift~to-drag ratio may lead-to a skip

trajectory. Hence, the constant CL/CD progran used ig only maintained until
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the flight path is essentially horizomtal, vy = 0 ., near the point where maxi-
mul deceleration is reached. After this point the lift-to-drag ratio is
modulated to maintain the flight inside the atmosphere in order to complete
entry in a single pass.

The overshoot boundary with negative 1ift, and the undershoot boundary
with positive lift for varioué prescribed aﬁax are plotted in Fig. 12-13
for entry at parabolic spged, §£ = 1.4 , and entry at slightly hyperbolic
speed, V& = 1.6 . The curve in Fig. 12-11 is used for obtaining the exten-

sion of the undershoot boundaries for modulated GLYC::D .from curves cal-
cula;ed for constant CL/CD . With a given E;ax the improvemen; using
modulated CL/CD is "insignificant in the range of GL/CD less than about

0.5 . At CL/CD greater than about 1 , the undershoot boundaries with
modulated CL/CD are considerably extended beyond those for constant CL/CD .
Since a constant CD has been assumed and the absecissa is plotted in logio FP

the corridor width is proportiomal to the horizontal spacing between the over-

shoot boundary and the undershoot boundary.
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CHAPTER 13

UNIFIED THEORY FOR ENTRY INTC PLANETARY ATMOSPHERES

13-1, INTRODUCTION

The eclassical theories for planar entry into planetary atmospheres have
been presented in Chapters 6 through 12. Except for Loh's second-order theory
which gives a high degree of accuracy, the application of all theories is
severely restricted. Each theory is applicable to one particular type of _
entry trajectory because of the assumptions introduced to facilitate the in—
tegration of the equations of motion. Loh's theory itself is empirical. To
alleviate this heuristic aspect, in Chapter 7 we offered a physical explana-
tion to justify his theory.

This book is designed primarily.as a textbook. However, it is also in-
tended to present a complete account of the present state of the art of the
problem of evaluating the performance of a liftiﬁg hypervelocity vehicle en-
tering a planetary atmosphere along a three-dimensioral path.

Up to this point, the first objective has been fulfilled. Entry theories
have been presented with their appropriate simplifications to render explicit
the dynamiec characteristics of each type of entry trajectory. Simple but ac~
curate first-order solutions have been obtained. They are of valuable assis-
tance in andlyzing the effect of the gravity force and the aerodynamic force,
the two main forces considered in this volume, on the entry érajectories.
Furthermore, tha closed form solutions obtained lead to explicit forms for
physical quantities of interest during entry, such as the deceleration and

the heating rate. These data are of utmost importance for the préliminary de-

sign or mission planning of entry vehicles.
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In the last quarter of this century, a new direction for space explora-
tion is formulated. Frequent flights weekly or even daily to Earth orbit
are planned. This introduces a new generation of space vehicles, a versatile
lifting hypervelocity veﬁicle used both as a satellite and as a winged atmo-
spheric vehicle with airplane aerodynamic maneuverability. This requires a
unified theory for studying atmosphetric entry,‘a %heory that is applicable to
all types of entry including entry with 1lift and bank modulation. The second
objective of this book is the formulation of such a theory and the presenta-

-~

tion of it in a complete but readable form to assist emgineers and scientists
working on the space program in understanding the complexity associated with
hyperveloecity f£light. ‘
A unified theory that enables one to study the performance of a gemeral
type of lifting vehicle, regardless of its weight, shape and size, entering
an arbitrary planetary atmosphere, would require a set of universal equatioms.
In turn, this requires universal variables, free of the physical character-
istics of the vehicle. In this respect, the best theory available is undoubt-—
edly Chapman's theory for anélysis of planetary entry (Ref. 1-2). Chapnan's
theory for planetary entry was presented in Chapters 11 and 12. Just as most
other first-order theories, it is restricted to planar emtries. This restric-
tion is of minor inconvenience since it can be easily removed. A major de-
ficiency in Chapman's theory is that, because of his two main assumﬁéions,
the equations are only approximate and the applications are restricted to
entry trajectories with small flight path angles, or small 1ift—to-dfag ratios.
Tn this Chapter, Chapman's restrictive assumptions are removed and the
results extended to three-dimensional entry trajectories, while all the dis-

tinctive features in Chapman's classical analysis are conserved. Furthermore,

it will be shown that, from the exact equations, all the known first and second-
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order solutions can be obtained, thus displaying a certain universality for

the present theory.

13-2. UNIVERSAL EQUATIONS FOR THREE-DIMENSIONAL ENTRY TRAJECTORIES
The equations of motion of a nonthrusting, lifting vehicle, entering a

planetary atmosphere were derived in Chapter 2:

dr
dt

Il

V sin v

dd _ V cos y cos ¥
dt T cos o

d¢ _ V cos vy sin ¢

de ko
5 (13-1)
av _ _ P5GY . '
& =" T CEsiny
a pSC V2 2
v - L s - (g - E—D cos ¥y
dt 2m r
2
pSC_V 2
V-%%-= EE_E%E_? gin o - T cos Yy cos ¢ tan ¢

~

The first three equations are gimply the kinematic relatione. The last
three equations are the momentum equations. The planet and its atmosphere
are assumed to be spherical and nonrotating. The initial plane is taken as
the reference plane which shall be referred to as the equatorial plane without
loss of gemerality. The flight path angle vy 1is measured positive uﬁward
from the local horizontal plane, and the heading angle ¢ is measured positive
to the left of the initial trajectory in the direction of the North pele

(Fig. 13-1). The bank angle ¢ is taken such that, for small positive ¢ ,

the vehicle is turning to the left. This angle is defined as the angle between
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Fig., 13-1. Cootdinate Systems

the local vertical plame, the G:} s %) plane, and the plane containing the

aerodynamic force X and the velocity v , the (K s -\)f) plane.

The gravitational field is taken to be a central, inverse square field,

with the acceleration g(r) given by

g(r) = % _ (13-2)
r
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where 1 dis the gravitational constant.
The atmospherie density, p , is a strong function of the aititude.
It shall be assured to be locally exponential in that it varies according to

the differential law

%‘l = — B dr (13-3)

where the local scale height, 1/8 , for any specified planetary atmosphere,
is a function of the radial distance r .

In his classical paper (Ref. 1), Chapman introduced twe dimensionless

variables, u and Z , defined as

SC
=z reosy Es%‘% /—gi (13-4)
er ‘

It has been found more convenient for the present theory to use the mod-
ified variables

pSC

2 2
_ Vcos’y =._2/£ _
ws et 2 - (13-5)

Chapman used the variable u as the independent variable. 1t will be shown
later that, at high altitude, u is oscillatory, and in the limit, for flight
in the vacuwm, u is purely periodic. To avoid this difficulty, in deriving
the exact three~dimensional entry equations, we shall use the following dimen-
sionless variable as the independent variable

t

s=f

0

cos vy dt - (13-6)

H |

This variable is strictly increasing as long as cos y > 0 , a condition which
is always satisfied for entry with constant 1ift and drag coefficients. With

this independent variable Egs. (13~1) become
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g§_= cos P
ds cos ¢

gﬂ: ‘]

ds sin ¥

de .rpSCD'V2

s - " meos Ty 2 gr tan ¥y 13-7)
rpSC.cos ©

ds 2m cos ¥ V2
rpSC _sin @ .

%£-= L - cos ¢ tan ¢

2m c052 ¥
The differential relation between r and s is

dr - _
== T tan ¥y (13-8)

As in Chapman's theory, the variable Vz is replaced by u , while the radial
distance r is replaced by the variable Z .

The derivative of wu with respect to s , with u as defined in
Eq. (13-5), is

G

gﬁ = ___“___2/5? zu[l + C—L— cos o tan v + —M] a3-9
S cos Y D 23/8_1'— 7z

The derivative of Z with iespect to s , with the differential law for o,

. Eg. (13-3), is

iz _ 1, 1 48 £ s
) ‘—S‘— - Br(l —-i'é-f-'!- 282 d]:‘) Z tan v (13-10)

Finally, the differential equations for y and ¢ , written in terms

£y

of the dimensionless variables, are

. G 2
%§'= %%gﬁ%féﬁ cos o + jff_yﬁl - coi 1. (13-11)
D Br Z
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and
dy YBr Z CL coszy cos P tan ¢
=" __—75-"h5_ sin ¢ - . ] (13-12)
cos v D YBr Z

These dimensionless equations are exact. In particular, they reduce to the
equations for Keplerian motion when Z + 0 .

In Eq. (13-10) for 2 , if a strictly exponential atmosphere is use&
B = constant, and dB/dr = 0 . On the other hand, if an isothermal atmo-~
sphere is considered, B/g = constant, and (l/ZBZ)CdB/dr) == 1/8r . In
both cases, in the equations of motion, the variables B and %nter as
the product Br . For the Earth, for altitudes below 120 kilometers, the
mean value is large., In this same region Br wvaries from a low ;f about 750
to a high of about 1300 . It is, however, a ﬁetter assumption to use a mean
value for Br than simply to put B8 constant and use the simple exponential
atmosphers in the computation. This development will follow Chapman's lead
and put Br constant. Also, because of the large value for Br , the quan-
tity inside the brackets in Eq. (13-10) is practically umity. This minor as-—
sumption concerning the product Br does not alter the asymptotic behavior
of the trajectory at very high altitudes where the equation in Z becomes in-
operative,

In summary, the equations of motion for three—dimensional entry trajec-

tories are

-d—§=—BIZtaIl’Y
'%§-= N ZJEE'Zu(l + X tam y +' sin Y)
cos ¥ 2/Br Z

3_';=Z§—;-$[;\+CS_S-Y{1_COE Y)]
VBr Z

(13-13)
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do cos P
ds cos &

(13-13, continued)

dé _
ds sin ¢
2
gg.s /E;'Z, _tos_ vy cos P tan ¢)
ds 2 - JRE
cos v Br Z
where
C C -
A = —Eﬁcos c , 8§ = & sin o . (13-14)
Cp Cp .

The equations (13-13) were first derived by Vinh and Brace (Ref. 3).
In view of the definition (13-5) of Z , they are restricted to flight at
constant drag coefficient CD . They are also valid for flight affected by

a modulation in the lift coefficient CL ,» While keeping CD constant, and
for flight with a completely free modulation in the bank angle. Extension
of these equations to the case of free modulation in the coefficients CD

and CL and in the bank angle o for the study of three-dimensional optimal
trajectories in atmospheric, hypervelocity flight has been obtained by Vinh,
Busemann and Culp (Ref. 4).

The equations derived can be considered as the exact equations for entry
into a planetary atmosphere. Just as Chapman's simplified equations, they
are completely free of the characteristics of the vehicle. Hence, they can
be used to analyze the motion of an arbitrary vehicle regardléss of 1ts
weight, size and shape. The characteristics of the atmosphere enter the equa-
tions in the form of the parameter Br .

Once the atmosphere has been specified through Br , for anyrprescribed

lift-to-drag retio, GL/CD , and bank angle, ¢ , and with a prescribed set

of initial conditioms, the universal function Z can be generated, and
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different physical quantities during entry can be evaluated and amalyzed
exactly as in Chapman's theory; described in Chapters 11 and 12. It may be
thought at first glance that, to integrate Chapman's simplified equatiom,

Eq. (11-16) of Chapter 11, only the product YBr (C;/C,) need.be prescribed
and mot VBr and (CL/CD) separately. That is, Chapman's analysis appears
to apply to any arbitrary atmosphere. But this is not rigorously true since
in evaluating the flight path angle <y , using Chapman's first equatibn,

Eq. (11-12) of Chapter 11, the parameter vBr mneeds to be prescribed. A nor—

malizing technique to obtain a similarity solution for an arbitrary atmosphere
requires sacrificing the accuracy in evaluating the universal 2Z function

and the flight path angle vy , and restricting thé analysis to a small class

of entry trajectories.

13-3. EEDUCTION TO CLASSICAL SOLUTLONS

The equations derived are the universal equations in the sense of Chap-
man since they produce the universal Z functions for analyzing the motion,
deceleration and heating of an arbitrary vehicle. Furthermore, they are the
exact equations for flight of a vehicle in a Newtondan gravitational field
subject to aerodynamic force. In particular, they provide the Keplerian solu-
tion for flight in a vacuum and all other classical solutions when appropriate
assumptions are introduced. These particular solutions can be obtained as

follows.

13-3.1. Keplerian Solution

“For flight in the vacuum, let Z + Q0 . The first of Eqs. (13-13) is

inoperative. It is replaced by Eq. (13-8). Using this equation to change

the independent variable from s to r , we rewrite the other Eqs. (13-13)
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du_ _u
dr r
dy _ 1 .. _cos Yy
dr " r tan v° u
do cos P
av _ 13-15
dr r tan y cos ¢ (13-15)
d¢ _ _sin
dr r tan ¥y
dy _ _ cos ¥ tan ¢ .
dr r tan vy
Integrating the first of these equations yields
u = P;_ _ (13-16)

where p is a constant of integration. WNext, combining the first two equa-

tions to eliminate r gives

d 1 2
EY; = - (1 - 805y (13-17)

By the change of variable

' = -—'—T‘-— (13"18)
cos” ¥y
this becomes the linear equation
ar , 2 . _2 _
-‘E+Ef—u2 ) (13-19)

which integrates to

1]

2u 4 constant

2
u .

T =

For reasons that will be clear later this sclution is writte;n
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2 u2
cog” y = 5 (13-20)
2u - {1 - &)
where e i1is a constant of integration.
Combining the last two equations (13-15), we obtain
d¢ _ _ tan _
T tan ¢ (13-21)
The integration is immediate:
cos ¢ cos P = cos I (13-22) _

where I dis a new constant of integration.

The equation for 6 can be written with ¢ as the independent vari-

able.
48 1
ay ~ " sinm ¢ (13-23)
Using the solution (13-22) for ¢
%% = - cos ¥ (13-24)
/Q;éz P - cos2 I
The quadrature gives
sin ¢ = sin I cos(b - Q) (13-25)
where @ d4s another constant of integration.
Finally, we define a new variable o by the relation .
' cos & = cos ¢ cos(f - Q) {13-26)

Figure 13-2 displays the geometric relationship among the angles 6 , ¢ ,
v and I , & , & . The angle I dis the inelination, and the angle

2 1is the longitude of the ascending node. They are constants of the motion
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for a Keplerian orbit. The new variable « , introduced to replace the
angle 8 , is simply the polar angle, measured in the plane of motion from
the line of the ascending node. From relations in spherical trigonometzy

we have also

sin ¢ = sin 1 sin o
’ sin ¥ = tan ¢ cot o (13-27)
sin(6 - Q) = tan ¢ cot L

The derivative of Eq. (13-26) with respect to r , with Egs. (13-15),

(13-22) and (13-27) used for simplification, results in_

da _ 1

.. -2
dr r tan ¥y (13-28)

If u dis taken as the independént variable, and if the solution (13-20)

is used to evaluate tan v dn terms of u , then

J[; u2 + 2u - (A - ez)

This integrates to
u=1+e cos(a - w) (13~30)

where w d1s the last constant of integraticen. It_defines the arguhent of
periapsis. ‘FrOm the solutions (13-16) and (13-30) we can identify e as
. the eccentricity of the orbit and p as the conic parameter.

For subsequent discussions, for Keplerian motion, we will take the
plane of motion as the reference plane, with the reference direction along

-

the pericenter. Then the equations of interest become

u=1+e cos 8§ = g- (13-31)
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and

2 u? . )
cos ¥y = v 3 . (13-32)
2u - (1L - e")

We see that, autside the atmosphere, u wvaries periodically between
u=1-e and u=1+e . Hence, for flight with atmospheric drag involv-
ing several passages through the atmosphere, the variable u , and hence
Chapman's variable u = uljz s 1s oscillatory. It is, therefore, more con—
venient to replace it as independent wvariable by the dimensionless wvariable

-~

s as defined by Eq. (13-6). -

13-3.2. Chapman's Equations

In deriving his equations, Chapman introduced two basic assumptions
(Ref. 1)
a/ The percentage change in the radial distance is small compared to

the percentage change in the horizontal component of the velocity.

dr

v

|d(V cos ) S

V cos ¥

In terms of the variables wu and Z , this basic assumption is expressed
as

C

1 +c—L tan y| >> |S2BY|. (13-33)
D YBr Z x

b/ For lifting vehicles, the flight path angle vy is sufficiently
small that the 1lift component in the horizontal direction is small compared
to the drag combonent in the same direction.

€L
1 >> = tan ¥ - = (13-34)
p

Before we continue with the derivation of Chapman's equations from our

formulation, the following remark is pertiment.
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Most of the published analytical works on the theory concern planar
entry. For nonplanar entry, as far as the altitude, speed and flight path
angle are concerned, we only need to consider the first three of Egs. (13-13).
These equations govern the three-dimensional variation of Z , u , and
Y , upon specification of the initial conditions for these variables, and
the three-dimensional flight parameter X = (CL/CD) cos ¢ . Hence, through-—

out the rest of this paper, we shall consider only the three equations

4z -

s = = Br Z tan ¥y
du__ 2/BE Zuey 4y pan ¢+ SBY (13-35)
s cos Y 278t 7 .
2
/Br Z

They are valid for three-dimensional'entry at constant lift-to-drag ratio,
and constant bank angle. For comparison with the classieal solutions for
planar entry we. simply consider A as being CL]CD .

Now, applying Chapman's basic assumptioms, Eqgs. (13-33) and (13-34),

to the equation for u , we have the reduced equation

du _ _ 2/gr Zu

ds cos Y (13-36)

These assumptions automatically restrict the walidity of Chapman's.theoxry
te the portion of trajectory where u dis monotonically decreasing. Using
this equation to change the independent variable from s to u , we- rewrite

the equations for Z2 and vy

§§_= ¥Br sin v

o %4 (13-37)

and
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2
dy 1 cos Y cos ¥ '
=L =_-={x + (1- 3] (13-38)
du Zu @;-Z u

It is convenient for concordance to return to Chapman's original variables
D

u and Z . From definitions‘(13—4) and (13-5),

2

usu w &

(13-39)

in
/| N

Hence, in terms of Chapman's variables, Egqs. (13-37) and (13-38) become

& _Z. JBrsiny (13-40)
du u N
and
d 1. . % 2
&~ - oap o+ 2221 - 25 (13-41)
du u JE; Z u

Equation (13-40) is Chapman's first equation. It is used to evaluate the

flight path angle. If we take the derivative of this equation with respect

to u , using Eq. (13-41), we have

= = 2 _—2 2 :
u Q_{QZ__ Z) +cos y(u_ - cos ¥) + YBr A cos vy =0 (13-42)

du du © Zu

This equation is equivalent to Chapman's second-order nonlinear differential
equation with Z as the dependent variable and u as the independent vari-
able. To obtain the equation in the form identical to the omne given by

Chapman in his classical paper (Ref. 1), we write it as

_ (1 -u 2) cos4

” d(ﬁi -3 - Y 4+ /Br A cas® v
du du u Zu : )
(13-43)
, — 2 . 2 )
+ L cos Z_Sln Y+ /Br A cos y sin” y = 0
Z .

With the aid of Eq. (13-40), we consider the sum of-the terms
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= = - 2 . 2
- G;% - %§ 4+ & coB I_Sln Y + YBr A cos Y sin2 Y
du u Z

— 2 .
= - /Br sin y[1 -2 cosz Y tan v — u_cos Yy sSin Y] = YBr sin v

VBr Z
The last step is obtained by applying Chapman's basic assumptions, Egs. (13-33)
and (13-34). We see that this is equivalent to neglecting the terms contain-

ing sin2 ¥ in Eq. (13-43). Thus,

— — —_ — 2 *
u %_ g - (i% -5 - !jfE§L——c034 y - /BT A cos® y (13-44)
du du u Zu ‘ ) .

Chapman derived this same equation for planar entry by repeatedly applying

his two basic assumptions.

13-3.3. Yaroshevskii's Equation

Yaros?evskii's theory, (Ref. 5), is closely related to Chapman's
theory. It can be shown that, for constant lift-to-drag ratio entry, Yaro-
shevskii's second-order nonlinear differential equation is a special case of
Chapman's equation.

Yaroshevskii used an independent variable, x , and a dependent vari-

able, z , defined as

EnT 5¢C T .

log

]
]

where the subscript zero denotes the condition at a referencé level.

In the more sophisticated definition of Chapman's variables, Eé. (13-4),
if we use a constant value for r , and the assumption of a very small
flight path angle, cos vy = 1 , we have .

_ _ 8C.p r. ) )
w = — s, Z= —-zc-g-- / E{—)* u (13-46)
/ &0%0 .
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Hence, we have the relations between the two sets of variables

-

=z , u=e (13-47)

sl ,

The corresponding relation in the derivatives is

4.

d
= () (13-48)
du

(V== ()=~

e | e

On the other hand, for very small flight path angles, Chapman's ecquation,

Eq. (13-44), is reduced to

2
u—————:)—-—_——-—-i- BI‘ A=0 (13—49)
Z v 0

dudu u

e

Using the transformations (13-47) and (13-48) in this equation, we have Yaro-

shevskii's equation

ol -
— = 13-50
z,1-e +//er1 0 ( )
2 z

d2
dx

13-3.4. Loh's Second-Order Solution

There exist several first-order solutions. The assumptions introduced

concern the equation for ¥ ., the third of the basic Eqs. (13-35). We write

it as
dy  Brz, 5 (13-51)
ds cos Y . -
where
2 )
G =S8 Y - °°fl ) (13-52)
' VBt Z

represents the combined gravity and centrifugal acceleration along the mnormal
to the £light path.

For ckip trajectories, Eggers and Allen neglect the G term compared
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to the 1lift A , (Ref. 6). For equilibrium glide with nearly zero. flight
path angle, the correct assumption by Singer yields X +G = 0 (Ref. 7).
This.leads Loh to conjecture, based on extensive mumerical analysis, that.
the G term is nearly constant during the integration (Ref. 8).

" The equations for ¥ and u , written with Z as the independent

variable, are

&y __O+6) ' (13-53)
dz YBr sin s Q
and
du 2u sin ¥y
- ————(1 + A tan Yy + —) (13-54)
VBT sin ¥y 2/Br 2 .

With Loh's assumption of constant G , the integration of Eg. (13-53)

is immediate. We have

cos Y - cos Y, = iﬁ:;igl(z - Zi) (13-55)
Bxr

where subscript i denotes the initial conditjon. To assess the effect of
each of the entry variables, in the final equation, Eq. (13-53), ¢ is to
be replaced by its definition, Eq. (13-52).

Equation (13-54) for u has a singularity for Z =0 . To avoid

this difficulty, we rewrite it as

2

Br sin ¥y

1

. log Z] =

%E[log u - (L + X tan YZ (13-56)

Dividing.this equation by Eq. (13-53), we have

(+0) 4
2 dy

i

[log u - ar

log 2] = - (1 + A tan v) {13-57)

Integrating and using the initial conditions, we have
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cos ¥y (A + G) u o G) Z_ -
Yy - v, = A log cos Y 2 log u + 28T log Zi (13-58)

Equaéions {(13-55) and (13-58) constitute what Loh has called the unified solu-
tion éf entry dynamics (Ref. 8). The last term in Eq. (13-58) is the higher-
order effect term. It has been given only in approximate form by Loh. Further-
more, the equations used in Loh's analysis assume constant gravity. Neglect-

ing the last term in Eq. (13-58) we have Loh's second-order solution.

cos Y _(ATG) gL (13-59)

cos Y, 2 u, .

Y-y =2 log

For ballistic entry, A =0 . Thus, to the first order, by neglect-
ing the gravity and centrifugal force, we have from this equation vy = Yy

Keeping the G term, we combine this Eq. with Eq. (13-55) to obtain

cos Y — cos Y; sin Yi

(z -2)
~—/log =— = -

/Bt u, 2(y - Yi) 2

This gives the classical first—order solution for ballistic entry (Refs. 1,9)

_ VBr . u
ZI = Zi + 5 sin vy log u (13-60)

For gliding entry, A +G =0 , cosy =1 , Thus, from the definition

(13-52) of G ,

ZII = 1= {13-61)
JE; Au .

This is the first-order solution originally derived by Singer (Ref. j). For

]

skip entry, G = 0 , and Eq. (13-59) is reduced to

u1/2 uillz Yy ’ 62
cOS Y  COS Ty exp( X ) FIB_ )

while, from Eq. (13-55), we have the solution for Z
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N BT (cos ¥ - cos yi)

ZIII = Zi + 3 (13-63)

For small flight path angles the equations become

= A e B -
Y; =Y =75 log o (13-64)
i
and
Br, 2 2
e S I TR P (13-65)
Using Eq. (13-64) we can rewrite this solution .
YBr u /Br 2 u
ZIII =Z; +-—§—-Yi log E;v— —EF—A log —;— (13-66)

This is the solution for skip trajectories obtained by Chapman (Ref. 1).

The analysis in this section hag shown that all %he known first-order
and second-order solutions for entry dynamics can be obtained from the pres-
ent formulation including the exact limiting case for orbital flight outside
the atmosphere. Another second-order theory can be constructed by matching
the Keplerian solution with one of the first-order solutions as has been done
by Shi and Pottsepp for planar\prajectories (Ref. 10). Such a matched asymp-

totic solution for three-dimensional entry trajectories using the present

formulation will be presented in Chapter 14.

13-4, THREﬁ-DIMENSIONAL TRAJECTORIES IN PHASE SPACE

As mentioned previously, even for nomnplanar entry, as far as th; alti~
tude, speed and!flight path angle are concerned, we need only to consider
the three decoupled equations for Z , u and Yy , Egs. (13-35); with only
the flight parameter A = (CL/CD) cos ¢ prescribed. This is sufficient to

analyze the deceleration and aerodynamic heating because all these quantities
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can be expregsed as functions of the variables 2 , u and vy .

Let
y= L (13-67)
YBr Z
Equations (13-35) become
dy _
ds Br y tan v
du _ 2ul
ds  y cos v (13-68) -
dy ___ 6 .
ds vy cos ¥
where, by definition
A=1+ X tan v +.Z_§%E;1
(13~69)
cos2
G=A+ycos vy - ——5"19

For the discussion of the beshavior of the trajectory, the cylindrical phase
coordinate system (u , v ,’y) 1is very useful (Fig. 13-3). In this system,
vy represents the altitude, with y =+ = for drag—frée orbital flight, and
Y=Y, corresponding to sea level. DNote that y is a function of the drag
parameter through Z . In the (u , y) plane, v is negative-in the clock-
wise direction. The Keplerian orbits in this plan; are represented.ﬁy the
equation ‘ .

2

coszY = 4 5 {(13-70)
2u - (L -e7)

where e is the eccentricity of the orbit. 7Using e as a parameter, we
have a series of closed curves, symmetric with respect to the y = 0 axis,

each of them representing a family of Keplerian orbits having the same
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Fig. 13-3. The Trajectory in Phase Space

H

eccentricity (Fig. 13-4). To characterize any particular orbit of a family,
we can specify its periapsis distance. This will naturally lead to the

definition of the periapsis parameter Zp , to be discussed in more detail
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later.

There exist many characteristic surfaces in the phase space. The
most’ interesting surfaces are:

The surface of extremum altitude. This is simply the plane v =0 .

The surface of extremum horizontal speed u . This is a ruled sur-
face whose equation is A = 0 . We shall refer to this surface as the sur-

face A .

The surface of extremum flight path angle vy . The surface is sym-

-

metric with respect to the v = 0 plane, and its equation is G =0 . We

>

shall refer to this surface as the surface G . We shall restrict our dis-

cussion to the case of positive 1ift, XA >0 . For ballistic entry, the

G surface is the vertical cylinder whose projection into the (u , v)

-

plane is the curve
2
u = cos vy (13-71)

This curve is plotted as the dotted line in Fig. 13-4. It is not only the
locus of the points of extremum <y for Keplerian orbits, but also for bal-

listic trajectories.

s

During entrxy, the heating rate per unit area at any point on a body

is a fraction of the heating rate at Ehe stagnation point, which is propor-
pl/2V3

.

tional to . Hence, we consider the dimensiocnless heating rate

u3/2 v

T=2z72% 32 B E (13-72)
y

) (Br)

The heating rate reaches an extremm when dq/ds = 0 . Explicitly,. when

(Br + 3) y sin vy _
6

B=1+Xtan vy + 0o *(13-73)
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The surface represented by this equation is also a ruled surface, and will
be referred to as the surface B .

The deceleration due to the aerodynamic force is given by

- cos ¥

Hence, following Chapman, we consider the quantity

(13-75)

a = V/Br Zu =

g

which is nearly proportional to the deceleration during entry. Thé deceler—

ation reaches an extremum when dajfds =0 . Explicitly, when

CEl-l-_ltany+(Br+l)2y siny _ 0 . (13-76)

The surface represented by this equation is also a ruled surface and
will be referred to as the surface C .

The surfaces A' , B and C are shown in Fig. 13-3. They are all
in the ¥ <0 . Each of the surfaces divides the phase space into two re-
gions. The corresponding wvariable, u , E- or a , increases in one re-

gion and decreases in the other. Whem v = 0 , the three functions

A=B=C=1 are all positive. By writing

C=A +-E£§z-sin vy=B8+ EEgz-sin ¥ {(13-77)

we can assess the order of the positions of the surfaces as shown in-fig. 13-3.
One impor'tant conclusion is immediate. The peak heating rate, and the

peak deceleration, both ocecur when the altitude is aecreasing {(vy <0 ,

along the portion of the trajectory where u is d—e-creasing. Thi; justifies

Chapman's analysis, restricted to the range of decreasing u . Also, it is

clear that during entry, the peak heating rate occurs first, at higher u .,
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and then comes the peak deceleration, before the vehicle reaches the lowest

point, y=0 or y=1y »  For ballistic entry where X =0 , v =¥y

s ]

i
the.condition for a continuously increasing deceleration during entry is
simply Cs(yi) < 0 . There may exist several maxima and minima for each of
the variables considered. The system (13-68) has only one family of periodic
solutions, the Keplerian .solution for vy = = . This solution can be con-
sidered as the asymptotic solution of the system if the equations are inte-
grated backward in time. Ruling out the trivial solution of vertical entry
with A =0 , all the entry trajectories start out from one of the Kepler-

ian orbits as shown in Fig. 13-4. Consider a particular orbit, with eccen-

tricity - e . Initjally, u varies periodically between u=1-e , and

u=1l+e . The line vy=0 , 1u>1 dis the periapsis line, and the line
Yy=0 , u<1 is the apoapsis line. If the periapsis altitude of the -
orbit is very high, the departure from the Keplerian orbit oeccurs near the
periapsis, vy = 0 , and the process of orbit decay shrinks the initial or-
bit to the circular orbit, e=0 , y=0 , u =1 before effective entry.

On the other hand, if an orbit with the same eccentricity, as repre-
sented by the heavy line in Fig. 13-4 has a periapsis low enough, the de-
parture from Keplerian orbit starts well before the vehicle reaches the Kep-
lerian periapsis. There are several ways of defining this initial, or entry
condition: h

a/ The initial altitude ie fixed at an aibitrary value), say 95.km .
This involves some degree of arbitrariness, since it doeg not take into con-
sideration the ballistic parameter of the vehicle.

b/ The initial altitude is taken where the deceleration due.tc the

drag force has attained some nomnegligible value £ , say £ = 0.05 .

From Egs. (13-70) and (13-75), this is equivalent to using the initial
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condition
2

u,
1

u, = fyi s coszyi = (13-78)

+ 2ui— {a - 92)

In genefal, if the descending Keplerian orbit is kmown, e is known and
Vizlgiri can be evaluated accurately. Equations (13-78) will provide the
conditions LY PR yi .

¢/ For the construction of Chapman Tables using the present theory,
u, and Y; are the prescribed entry data. The initial point for the tra—_
jectory can be considered as being on the A surface where the variable u
begins to decrease. Hence, the initial walue of vy = 1/ YBr Zi for the

integration is obtained from

Yi sin Y

1+Atany;,+—5——=0 (13-79)

The trajectory can be classified as an oscillatory or a nonoscillatory
trajectory. A nonoscillatory entry trajectory does not intersect the vy =0
plane, and the altitude y continuously decreases until the level Yo -

Without integrating the system (13-68), it is possible to discuss the
qualitative characteristics of the motion using the geometric methods of
Poincaré (Ref. 11) and Birkhoff (Ref. 12). TFor the subsequent discussion,
for any variable X , the regions X+ and X denote the regioms }n the
phase space where the variable is positive and negative, respectively.

We have the following propositions:

+ R . + .
Proposition 1., The trajectory enters the vy region in the G  region, and

the Y— region in the G region.
This is an ismediate consequence of the equation for vy , the third of
Eqs. (13-68). Geometrically, it means that the trajectory-intersecﬁs the

v = 0 plane with increasing Yy , outside the G surface, and in the direction
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of decreasing vy dinside the G surface.

Proposition 2. Starting from a point vy =0 , in the G+ region, the trajec-—

tory.will reach a point Yy =0 in the G region after intersecting the €

surface once.
First, the dimensionless total energy of the system has the form
o u
CEE (-1 (13-80)
r 2
2 cos™y

where T, -is any reference distance. Its derivative with respect to s is

T
48 _ 0y u -
i o 5 <0 . (13-81)
¥y cos Y

Hence & 1is continuously decreasing. Ruling out the case of hyperbolic
speed, £ > 0 , this insures the boundedness of the variable y , and hence
provides conditions guaranteeing existence and uniqueness of the solutioné

of the system (13-68). Sipnce ¥ is bounded and increasing for v > 0 ,

it passes through a maximum value when v =0 . TFor positive vy between
the times 84 and Sy where v =0 , by continuity of the solution, vy
passes through an odd number of extrema, that is the trajectory intersects

the G surface an odd number of times. Let Sq and S, be the times when
the trajectory first enters the @& region and next leaves it. Between these
two points where G =0 , by continuity, G passes through a minimum given

by dG/ds = 0 . The equation for a stationary G is

2 2 .
‘%§-= Br v sin v(L - Egﬁ_lg - G tan v(1 - EEE_IQ +

2:6tan vy cos” y _ 2A cosy _ 0 -
u u

—p rd
Each of the terms of this equation is negative in the region G nY . Hence,

once entering the G region with y > 0 , the trajectory must pass through
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Y = 0 before leaving it, and the proposition is proved.

Proposition 3. The trajectory enters the G region with decreasing u .

If the trajectory starts from a peint vy =0 , G > 0 , Proposition
2 applies and the trajectory enters the G region at y > 0 , where A >0
and u is decreasing.

Next, we consider a t}ajectory starting from a point vy =0 , G <0 .
It can only reenter after leaving the G regidn where 7y passes through a
negative minimum value. Then <y begins to increase. If it reaches the level
¥y =0 , we have the previous case. If ¥y fails to reach the level y =0 ,
as long as v has not reached the minimum sea level wvalue Ve » by the
existence theorem, the meotion continues until Yy reaches its maximum negative
value when the trajectory reenters the G region., While for ballistic tra-
jectories the trajectory can only lea%e the G region with increasing u ,
for lifting trajectories it cam also leave with decreasing u .

Consider the derivative of A

dd _ G AG " Br v sinzy

ds 2 2 2 cos vy
¥ CcOS ¥

(13-83)

Notice. that, in the G+ region, A is always increasing.

First assume that the trajectory leaves the G region with decreasing
u , A>0 . Sincer A continues to increase it -remains positive-ghen the
trajectory reenters. -

On the other hand, if the trajectory leaves the G rééion wi?h‘increas-
ing u , the variable A dis negative at that point while increasing. Since
G passes through a maXimum between the two polnts where ‘G = { , ar the point
where the trajectory reenters the G region, we have G =0 , dG/ds <0 .

Using the expression (13-82), we have at that point
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2 :
- —%—‘:—Z?—I ~@8r Atany <0 (13-84)

Since v < 0 , we must have A > 0 , and hence u 1is decreasing while the
trajéctory enters the G region. This argument is also valid for the case
where the trajectory leaves the G region with decreasing u . The only
difference is that if the trajectory leaves the ¢ region with increasing
u A <0 , it must intersect the.surface A = 0 , before reentering the
G region with A > 0 .

The behavior of the trajectory in the (u , y) plane depends on the -
variables A and G since, as we recall, A = 0 provides the extremum of

u while G = 0 corresponds to the extremum of v . A single parameter

can be introduced by considering their ratio

(13-85)

W
i
S

We have the following interesting formulas.

Proposition 4. Let o be the angle between the tangent of the trajectory

in the (u , v) plane, and the y =0 axis, and R be its radius of curva-

ture. Then,

o =v+ 8% %- (13-86)
and
2.3/2
R = u{l + gk ) . (13-87)
1+ 4" + 2k | :
where '
tan § = 2k , k' = % (13-88)

First, the angle o« is given by (Fig. 13-4)
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= (sin v 38 du ; o Zktany - 1
tan ¢ = (sin ¥ ay + u cos v)/(cos v gy ~ v sin v) = 2%+ tan v
Substituting 2k = tan § yields
tan o tan (y + ) = -1 (13-89)

Hence, we have the relation (13-86). A straightforward calculation of the
radius of curvature R ?ields relation (13-87).

The propositions which have been proved are valuable in predicting the
behavior of the trajectory in the phase -space. In particular, they can be B
used to assess the validity of the assumptions introduced in sectién 13-3 to
obtain various approximate scolutions.

For gliding flight at mearly zero flight path angle, the trajectory in
the (u , y) plane oscillates near the vy = 0 axis with small angle &
(Fig. 13-5a). This leads to & =7 , and hence, by Egs. (13-85) and (13-88),
G =0 . The trajectory in the phase space roughly follows the intersection
of the G surface and the vy = 0 plane. —_ ‘

Using Chapman's basic assumptions, A=1 , k =1/6 , the approxi-
mate expression for the radius of curvature of the trajectory in the (u , Y)
plane is

u(4 + Gz) 3/2
2 _ 2gn]

R =
(s + ¢

: - (13-90)
Thus, the radius of curvature is nearly infinite, except at low speed, for
gliding flight, G = 0 (Fig. 13-5a).

For ballistic trajectories, A =0 , and along the fundamental part
of the trajectory where gravity and centrifugal force can be neglected,

G =0 . Again the radius of curvature of the trajectory in the (u , v)

plane is infinite, with v # 0 . The trajectory is essentially a straight
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line, (Fig. 13-5b).
For skip trajectories, neglecting the gravity and centrifugal force,

G = A , the radius of curvature is
5 ]
R = u/l + (4727) (13-91)

It is proportional to u , and hence is decreasing. The radius of curva-
ture is large for small 1ift. Whem A >« , R -+ u and the trajectory in
the (u , y) plane tends to a circle (Fig. 13-5b). Since for skip trajec-

tories, k = 1/A is constant, the angle § is also constant, and from Eq. (13-86)

*

o - vy = constant (13-92)

In the (u , y) plane the tangent to the trajectory makes a constant angle

with the position vector. The trajectory is a logarithmic spiral.

13-5. NIMERICAL RESULTS

The basic Egs. (13-35) have been integrated numerically with q;ffer—
ent values of the flighﬁ parameter A = (CL/CD) cos 0 . The results are
valid for three-~dimensional flight. Whenever compared with the numerical re-
sults of Chapmar for two~dimensional entry, A simply denotes the lift-to-
drag ratio CL/CD .

Figure 13-6 plots the ballistic entry trajectories, A = 0 ,.in the
(u , v) plane from an initial orbit with eccentricity e = 0.4 . Aithough
having the same eccentricity, the three Keplerian orbits have different peri-
apsis distances. The trajectory (A) has its periapsis inside the ﬁlanet,
and the entry starts early, near the apoapsis, with subcircular speed. The
trajectory (B) has higher periapsis, and finally the trajectorf . (€) has
relatively high periapsis such that the wvehicle passes throqgh the atmosphere,

and goes into another Keplerian orbit with smaller eccentricity and completes
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the ballistic entry on the next return,

Figﬁre 13-7 plots a lifting entry from a Keplerian orbit with eccen-
tricity e = 0.2 . With A = 0.5 and y;=-5 ,itisa near-equilib-
rium glide entry, and the flight path angle remains small. To show the
passages in and out of the G surface, the trajectory has been plotted in

the (v , ¥) plane where the polar radius v is defined as
vE (—— 1) (13-93)
h (y cos 7y ¢

By this affinity, the G surface is still the cylinder v = coszy in the

space (v , v , y) , while for Keplerian orbits y =+ « qulam

the equations for Keplerian trajectories are preserved.

Figure 13-8 shows several skip trajectories, with X =2 , gtarting
from orbits having the same eccentricity, e = 0.4 , with different peri-
apsis distances. The trajectories are plotted in the (v , y) plane which,
in the vacuum, is the same as the (u , v) plane. All the five skip trajec-
tories shown end at the points practically in the vacuum where the thicle
enters a Keplerian orbit with lower eccentricity.

If these skip trajectories are plotted in the (u , y) plane they
will have the approximate form of logarithmic spirals as shown in Fig. 13-5b.

The theory presented in this chapter can be considered as a universal
and exact tﬁeory for studying entry into planetary.atmospheres. Thé’univer-
sality of Chapman's -El function, or the equivalent Z Ffunction in the pres-
ent theory, has been clearly dispiayed in Chapter 11 when we discussed Chap-
man's theory. %he Z functions for different entry trajectories have been
computed and tabulated in Ref. 13. Since the data have been tha%ned with
truncated equations, they should be used with care, and the application of

the Z tables, as computed by Chapman and Kapphahn is in general restricted
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to the ;ange of variables in which Chapman's two basic assumptions are valid.
Several 2 functions, using the exact equations, have been computed by
Brace (Ref. 14). Some selected trajectories are reproduced here and com-
pared with Chapman's computed Z functionms. They .are chosen to display the
guantitative aspecé of Chapman's assymptions. -

In order to meaningfully compare Chapman's original results with the
results of the numerieal inteération of the exact equations the same value
Br = 900 has been used. Furthermore, the same integration program and the

-~

same method for selecting the initial value E; have been used. The results
for Z and u  are converted into Z , u , through Eq. (13-39), and the
diagrams are presented in terms of VBr Z u versus © as in'Chapmén's Ref. 1
for easy comparison.

Chapman's basic assumptions concern the coefficient A , as defined by

Eq. (13-69) and written as

A=1+4 Al + A, (13-94)
where
Ay =) tan ¥ (13-95)
A zieiny (13-96)
278t Z

As has been shown in Egs. (13-35) and (13-36), Chapman's assumptioné‘consist
of taking A =1 . Hence, Chapman's theory is accurate whedever A1_<< 1
and Az << 1 » Or more generally whenever Al + Az << 1 . It is tﬂerefore
informative, f;r each comparison, to also plot the functions Al s Az and
A . 1In every case, the results of the numerieal integration support the

hypotheses regarding the accuracy of Chapman's solution. Along trajectories

where Al and Az remain reasonably close to zero, Chapman's solution follows
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- the exact solution. Along trajectories where A is either discontinuous
or does not remain close to unity, there are discrepancies between Chapman's
theory and the present exact theory.
The best agreement between the exact analysis and Chapman's results
is evidenced in the case of steep angle ballistic entry (Figs. 13-9 and

13-10). A, is identically zero simce C. =0 , and A

1 L remains c}ose to

2
zero over most of the trajectory. This can be predicted by inspection of
Eg. (13-96). TFor steep ballistic enéry, sin Y is not small while VBr Z/u
which is proportional to p s quickly becomes finite and large. )
Figures 13-11 and 13-12 present another favorable case for Chapman's
theory, namely the equilibrium glide entry. Although A =1 ", Al = A tan vy
remains small for equilibrium glide along most of the trajectory except at
lower altitude when vy becomes large. On the other hand, although A2 ; as
given by Eq. (13-96) is negatively large at high altitude, as for all entry
trajectories from high altitude where Z = 0 , as soon as the vehicle reaches
the denser laver of the atmosphere /Br Z/u again becomes finite and large
so that A2 tends to zero. It is szen from Fig. 13-12 that whenever A re-
nains close to upity, Chapman's result is accurate.
Figures 13-13 and 13-14 present a trajectory where the basic dssumptions
of Chapman may be valid but his selection of the variable u as independent
variable regders his results inaccurate. Thig is a case of ballistié entry,

hency A, d4s identically zeroc. 3But a parabolic speed ﬁ; =1.4 , and with

2
a ghallow entry, Yy = 3.75° , the trajectory is an overshoot trajectory.
The trajectory makes a pass through the atmospheres, returns to a Keplerian
orbit at u = 0.98 , and the entry is completed during the next passage.

In the vicinity of u = 0.98 not only is A mnot near unity but A "1is

discontinuous and reaches large negative values. Although not shown .
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on the graphs, exact values of u produced by numerical integration using
s as the independent variable show an oscillation in the wvariable u as
predicted by the theory. The result is a large discrepancy between the exact
theory and Chapman's theory as can be seen in Fig. 13-13. From the figure,
it should not be inferred that Chapman's result becomes accurate again at
lower speed. The fact that the ordinate is YBr Z u , automatically sends
both the exact solution and Chapman's solution to zero as u tends to zero.
Finally, the entry trajectory presented in Figs. 13-15 and 13-16 is a

clearly unfavorable case for applying Chapman's theory. This is the case of

r

a grazing circular entry, Vi =1 , Yy =T 0.2° , but with high negative
1ift, A =-4 . With high negative 1ift, the vehicle will dive steeper and
steeper and the flight path angle will quickly reach large negative values.

From Eqs. (33-94) - (13-96), it is seen that although A, tends to zero, 'Al

2
will increase indefinitely providing wvalues for A much larger than wnity
as shown im Fig. 13-16.

Although Chapman's theory was never designed to be used in the high-lift
entry case, the Z Tables (Ref. 13) contain many such cases. Therefore, with
the advent of a new generation of entry vehicles having high 1ift capability,

the need for a revised set of data obtained by using the exact equations is

clearly indicated.

13-6. THE ENTRY CORRIDOR

Chapman's theory of the entry corridor has been presenéed in detail
in the previouss chapter. Whenever his two basic assumpticns are valid, the
results are accurate. In any case, the basic conception, through the use
of the perilapsis parameter ¥ s, 1s an outstanding conception and should

be retained for any Future, more accurate analysis. The notion of the peri-

apsis parameter is closely related to the definition of the entry altitude
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Fig. 13-15. JBr Z u versus u for Negative Lift Entry
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which, in turn, is the basis for the computation of the overshoot and under-
shoot boundarjes. These notions are revised in this section, in light of

the exact equations as a tool for computing accurake entry trajectories.

13-6.1. Definition of the Entry Point

To some extent, any definition of an entry point is arbitrary, since
from a strictly mathematical standpoint, the process of changing from a Kep-
lerian orbit to an atmospheric flight orbit is a continuously varying process.

For the numerical integration of his equation, Chapman chose the start-
ing value of y as the initial value of vy , and the starting'value of u

for the first point as 0.995 ;i . Then, since the eguation has a singular-
ity at 2 =0 , the starting value of Z is o_btained by an approximate
method. This choice of the starting-value of u clearly assumes that u
is decreasing at the entry point. As.shown in Fig. 13-3, if we are inter-
ested in effective entry trajectories, along which the heating rate and the
deceleration build up, then we can use Chapman's definition of an entry point
as the point where u starts to decrease. This is the point where the tra-
jectory intersects the surfa;e A . In this case, the initial value of Z
can be obtained from the equation

gin Vs

A=l1l+rtany, + —=—=0 (13~97)
2VBr zZ, :

a4

If a broade? class of trajectories is considered, especially trajec—
tcrieé with several passages through the atmosphere, then it.is natural to
consider the point where atmospheric flight is initiated as the point where
the acceleration caused by the aerodynamic force has reached a selected small

fraction of the local gravity force. The expression for the acceleration

due to aerodymamic force is given in Eq. (13-74). Hence, for a givéﬁ u,
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and Yoo E%. is obtained from

a, JEBxZu, ,—————
ALY AL Ay eyl (13-98)
g, 2 LD

i cos™y;

The manner in which £ 1s chosen determines the accuracy with which
the atmospheric portion of a trajectory may be interfaced with the Keplerian
portion. As f becomes smaller, the entry point moves backward along the
trajectory, and the two portioﬁs of the trajectory are more accurately
matched. However, a too small value of f renders the entry portion too
long and the tabulation of the numerical results unnecessarily cumbersome.

A reasonable range for £ dis from 0.005 to 0.05 . With regard to the
tabulation of noncoplanar trajectories, since we specify A = (CLIC$) cos o
for economy of parameters, the definition (13—§8) of the emtry point, wit@
CL/CD replaced by A can still be ﬁseﬁ without interfering with Ehe accuracy

if a small enough value of £ is selected.

13-6.2. Trajectories With Several Passes o

For this discussion, we adapt the definition of the entry point using
Eq. (13-98). Numerical results presented here‘&ere obtained with the walue
£=0.05 .

As a vehicle moves through the atmosphere, the acceleration which is
caused by the aerodynamic Fforce may become less thén £ , and the frajectory
of the vehicle again become essentially Keplerian. In the case of such a
"fly through” the integration starts from the first initial entry poiﬁt il

to the first exit point el where the aerodynamic acceleration has decreased

to the value £ . Let u s Y and Z be the values of the variables
El el el . .

at this first exit point. Starting from this point, the trajectory is Kep-

lerian and the vehicle returns for a second entry at the point i, (Fig. 13-17)
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where the asrodynamic acceleration has built up to the value f . Because

of the assumption of spherical symmetry of the planetary atmosphere, for the

secondléﬁtry point we have the initial wvalues:

. 1, - Ziz = Z‘"":L (13-99)
If. the integration of the second atmospheric portion of the trajectory

leads again to an e%it point e, > the conditions for the third entry point

i3 are calculated in the same manner from the condition at the last exit

point. The above procedure is repeated until final entry is effected.

13-6.3. Chapman's Periapsis Parameter, 35

Tt has been shown in Chapter 12 that Chapman's periapsis parameter is
used to define the entry condition.

He defined the periapsis parameter as

p SC T
Fp = -E——zm D //ER (13-100)

where rp is the hypothetical periapsis distance and pp is the atmospheric
density evaluated at this periapsis altitude. For a very small entry angle
Yy e and for a supercircular speed ﬁ; > 1.05 an approximate relation be-

tween Y4 and Fp has been given by Chapman as

2 2
Vi (/BiTvy)

=
e 203 -D ) (13-101)

o=
Py,
1

Hence 'Fﬁ can be used as an alternate parameter replacing Yy o¢ Before de-
riving a more accurate formula for FP for use in this chapter, we notice
that, by the definition (13-5) of our Z variable, we have FP =Y .

p
Hence, from now on, we shall use the notation Eb to replace FP to designate



13-54

the periapsis parameter.
For an atmosphere which is essentially exponential between the initial

point and the conie periapsis, we have

LE L -BG, - 1)
5 = /EP‘ e L (13-102)
i i
Now, if the value £ in Eq. (13-98) is selected small enough, the
entry point can be comsidered as a point on the initial Kelperian orbit

(Fig. 13-17). Hence, Egs. (13-31) and (13-32) apply. We have by evaluating

the constants p and e at the entry point and hypothetical periapsis

r u,
p__i (13-103)
r, u .
i p
and
2
Yy 2
—;—- - 2u, =u" - 2u (13~104)
i p D
cos Yi

Using Eq. (13-103) in Eq. (13-102), we obtain the expression for the

periapsis parameter in terms of Zi and the ratio ui/uP .

'Lli )
) . Bri(l - E_D
EP - % ;li e P (13-105)
P

There are many possible computing schemes using the formulas just derived.
For computation and tabulation of accurate % functions we can follow Chap-
man using ﬁi s Yy and (CL]CD) as entry data, and Eé as an auxiliary
paramgter. For uniformity, a single value of £ , say £ ='0.05 , is

selected. Then, we have u, = ?i coszyi . Then qp is obtained from

Eq. (13-104), E% from Eq. (13-98), and finally Ep from Eq. (13-105). The

- »
integration of the equations starts from the wvalues U, Yy and 2& .

For tabulation we can use either the modified (¥, u) Ffunétions, or the
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original Chapman variables (% , u) .

In practical application, for z given vehicle with a prescribed drag
parameter, approaching a planetary atmosphere, sometimes it is difficult to
obtain an accurate evaluation of the entry angle -Y; » @8 has been pointed
out by Chapman. In this case, since the Kepleri;n approach orbit is known,
its drag-éree ﬁeriapsis Qistance rP caﬁ'be easily evaluated. Hence, if
the atmosphere is known, we also have p? . For a prescribed drag param-
eter, FP is evaluated from Eq. (13-100). The entry speed Fi can be ac-~
curately evaluated from elements of the Keplerian orbit using a di?tance ry
representing the radius of the atmosphere. This is because ﬁ; is not as
sensitive ;o variation of r, as is Yyo- Since the Z Tables have ﬁg
and Zp as- entry data, together with CL/CD~ , the entry trajectory can be
identified. ’ .
Finally, Chapman used Eq. (13-101) to obtain an explicit formula for

¥, in terms of F » &, and V. . Written in terms of 2 » Z. and
P i i g} i

V. this is
i
=2
2(V, - 1) Z
= i B
Br v, = ——— Log (™) (13-106)
i 2 Z.
L' i
i
The use of this explicit formula is restricted to very small angles
Ti and ?i > 1.05 . An informative derivation of an improved for@ula for
Y; is as follows.
Let *
Z u,
[l v = ER x = —i (13"'107)
i up

From Eq, (13~103) it may be seen that (1 - x) is a very small positive

quantity. Thus, Eq. {(13-105), which is

o 1/2 8r(l - %) (13-108)
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or

Log y = %Log x + Bx(l - x) (13-109)

may be expanded for x mnear unity as

x~1 l(x - 1)2

Log x = - + A + . .
Thus,
Logy=(1-xlBr ~-+ =8 ] | x=1
2x 2

4x -

That is, for large value of Br .

1 “p.

1-x=43-Log G (13-110)

i
Now, since up = ui/x , Eq. (13-104) becomes

22(l ~ %) cosz'yi . 2
u, = 5 5 = Vi cos’y, (13-111)
cos y; = X

Hence, solving for sinzyi in terms of x and Vi

L -0+ viz - 2x]

sin“y, = — (13-112)

v
i

where x is given by (13-110). This formula may be written as

i)™

VA
Br sinzY. = [(1 +x) ﬁ? - 2x] Log 2 (13-113)
i i - Zi .

<

*

i
Now it is apparent that if x inside the square brackets is approximated by
unity, Chapman's formula (13-106) is recovered.

13-6.4. The Entry Corridor

The theory of the Entry Corridor has been discussed in detail in Chap-
ter 12. Here we shall present an accurate computing scheme for the calcula-

tion of the entry corridor, consistent with the new definition of the entry
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condition as given by Eq. (13-98). We shall consider only the'undershoot
boundary for deceleration-limited trajectories.

. First, if the exact expression (13-74) for the deceleration due to aero-
dynamic force is considered, instead of the simplified e&pression (13~75),
then by evaluating Equation da/ds = 0 for the surface C on which the

deceleration reaches extremum values, we have, considering 8r as constant

and using the basic equations (13-35)

. 2
C=2/Br 2+ (Br - 1) Siny+ZSanCOSY=O (13-114) ~

-

It is interesting to notice that this condition does not depend ex-~
plicitly cn the lift-to-drag ratio altﬂough the trajectory depends on that
parameter. Also, it is obvious that the condition can ouly be satisfied for
negative flight path angles. When a/fg reaches an extremm, either a maxi-
Dul or a minimum, the variables Z , u and vy satisfy condition (13-114)

with the extremur £, = a,/g given.by

o= /Br Zu
L 2

/ 1+ (cL/cD)2 (13-115)

cos Y
Hence, if £ = 0.05 is used to define the entry condition, for entry
trajectories to be completed during the [irst pass the minimum value for the

s

deceleration £, should not exceed 0.05 . Then, a systematic scanning of
all the overshoot boundaries is as follows.
We use the two equatioms (13-114) and (13-115) as starting conditioms,

at the exit point, with £, = 0.05 and integrate the trajectory backward

+

until £ = 0.05 again at the entry point. That 1s to say, for each prescribed

(CL/CD) we use Ze ags a scanning parameter and obtain Yo and us by

solving the two Egs. (13-114) and (13-115). The integration backward leads to

, Z, when f = 0.05 . This will give a

the entry conditicn Y; » U 1

i
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point for the overshoot boundary plotted on the diagram ﬁ& s Y3 s OT in

a better way, on the diagram f; s Zp . The conversion from Yy o U

Z, to ZP is obtained explicitly through Eqs. (13~104) and (13-105). The

1

results are presented in Fig. 13-18 for ballistié entry- giving the periapsis

parameter _ZP for overshoot boundary of any supercircular entry speed up

L to V. =2.2 ,
‘ i

Similarly, the undershoot boundary for any prescribed maximum decelera-

tion f* = f

hax  ©2D be cobtained in the same way. The two equatioms (13-114)

and (13-115) are used for the starting conditions at the point of Rgak deceler-
ation, f, = fmax . Then Z dis used as a scanning parameter for an integra-
tion backward to the entry point where f = 0.05 . The resulting vélue Yy
u, and Zg provides the entry condition for a peak deceleration f, = fmax .
It has been found that many ballistic entry trajectories have two peak deceler-
ations. The region where they occur and a comparison of their magnitudes are
shown in Fig. 13-18 depicting the .undershoot boundaries for differemnt wvalues

of fmax . As has been mentioned in Chapter 12, for ballistic emntry at super-
circular speed, there is a minimum value for the peak deceleration if the
entry is completed during the first pass. Using the ex;ct equations, it has

been found that the smallest possible peak deceleration is 6.5 g which oc—

curs for a slightly hyperbolic entry ?& = 1.466 with ZP = 0.13 .

Y
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Fig. 13-18. Overshoot and Undershoot Boundaries for Ballistic Entries
Into the Earth's Atmosphere
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CHAPTER 14

SOLUTION OF THE EXACT EQUATIONS

USING DIRECTLY MATCHED ASYMPTOTIC EXPANSIONS

14-1, INTRODUCTION

The dimensionless universal equations for atmospheric entry were de~
rived in the previous chapter. The modified Chapman's variables were intro—
duced primarily to generate numerically the Z functions appropriate for
analyzing entries of arbitrary vehicles., First-order solutions were also ob-
tained. -As presented in Chapter 13, the theory is semi-analytical. In this
chapter, a higher-order, analytical solution is presented. It is obtained
by using the method of directly matched asymptotic expansions applied to the
exact equations for three—dimensionaJ: entry. The two-regime approach of di-
rectly matched asymptotic expansions has proved to be feasible and effective
in some restricted cases (Refs. 1 - 4). This chapter will follow the recent,

complete integration of the exact umiversal equations, (Ref. 3).

14-~2. THE DIMENSTONLESS EQUATIONS OF MOTION
If an isothermal atmosphere is used, the universal equations, derived

in Chapter 13, have the form

dz _ _ 3.
g_:z________zﬁz:; (L+2 ta.1:|1'y+—-———siIl Yy

Y 2V/Br Z

5"
gl=/3_fz A+ 95 Y (g - 895 ¥y (14-1)
8 cos ¥y 7Bt Z u

ds _ cos
ds cos ¢
a4 sin ¢



14-2

2
a /Br_z (8 - cos y ¢os Y tan dl) (14-1, continued)

ds coszy YBr 2
where ¢
C . C .
A ==L cos g , &= Eé-sin g (14~2)
D D

The nomenclature is displayed in Fig. 14-1. The flight program is
specified by the lift-to-drag ratio, CL/CD , and the bank angle, ¢ , or
equivalently, the flight parametexrs A and 6 . They are assumed conmstant

for the flight. The 2 and u wvariables are modified Chapman's variables.

%/E
= Zm 8

Z:
{14-3)
4 = Vzcoszv
. BT

The dimensionless independent varisble s dis related to the radial dis-

tance r by the differential equation

ds _ 1 _
T @ r tan v (14-4)

The equééions will be transformed to be more suitable for use in the
methed of directly matched asymptotic expansions.
In this method, the solutions are obtained éeparately for an outer re-
_gion, where the gravity force is piedominént, and for an immer region, near
the planetary surface, where the aerodynamic force is predominant. Hence,
the altitude 1s the appropriate independent variable selected for the integra-
ticn. '

. Let y be the altitude and let subscript s denote the reference al-’

titude; for examplej.sea level. Then

r=r +y= rs(l + h) - - (14“§)
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Fig. 1l4-1l. Coordinate Systems

where the dimensionless altitude h is defined as

= L -
ho= = (14~6)

s
The differential relation between s and' r , Egqi (l4-4), becomes

B dh
4 = FH 3 h) tan v : (14-7)
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For the integration, we adopt a strictly exponential atmosphere, but the
general method can be applied to any more realistic atmosphere such as, for

example, the one proposed in Ref. 1. For an exponential atmosphere

where

e =L
Brs

Since the constant Brs is large, e.g., for the Earth atmosphere »Brs = 900

the parameter & 1is a small quantity. By the definition (14~3) of 7

o SC L2
- _8D /1+h) T« -
7= 208 / = e {14-10)
We define the ballistic.coefficient
SC.p )
- D's
B = 708 {14-11).

For each vehicle, B is specified and the variable Z is obtained from

h
€

(14~12)

i+
Z=B'/(14—h)e

£

This relation can-replace the first Eq. {(14-1). The other equationé; with the

dimensionless altitude h as independent variable, can be written

h
du_ ___u __2aQQ+Atany) | €
dh {1 + h) e gin v
h
951:————9——(1-3—2—)-—"—3;_5 (14-13)
di - (1 + h) u €

=pe (14-8)

(14-9)

>
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g - o3 h;"io‘g —— (14-13, continued)
gg_$ sin ¥ ,

dh ~ (1 + h) tan v n

dy _ _ _cos ¥ tam ¢ 3 Be ©

dh - (1 +h) tany € sin y cos ¥

where
q £ cos Y ' (14~14)

The Egqs. (14-13) are in a sﬁitable form for numerical integration for
flight inside an atmosphere. For an analytical solution of the enéry trajec-
tory using the method of matched asymptotic expansions, we shall use a more
convenient form using some elements of the orbit as introduced in celestial
mechanics, since these elements are constants of the métion for £light in a

VaCcuul. .

. As seen In Fig. 14-2, if I dis the inclination of the plane of the os-
culating orbit, that is, the (g . ?) plane, 2 the longitude of the as-
cending node, and « the angle between the line of the ascending node and

the position véctor, the following pertinent relations from spherical trigonom-
etry hold:

cos ¢ cos p=cos I
sin(e. - Q) = 2220 . (14-15)

cos ¢ = cos ¢ cos(h ~ Q)

These relations are independent. We can easily deduce
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47

The OScﬁlating Plane and the

14-2,

Orbital Elements
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sin § = 228 : (14-16)
sin ¢ = sin I cos(6 - Q)

Using these relations, we replace the variables ® , ¢ , and % with the

new variables o s % ,and I . The Egs. (4~13) now become

h

du _ _ u _2Bu(l + 2 tan y) e"'E
db- @+ £ sin y

2 .
gﬂ.—;____‘l._ (1-3—)—&23 £
dh (1 + h) u €

-k

da _ 1 _ B sin o £ B
dh (1+h) tany ¢ tan I sin y cos vy = (14-17)

" _h
ag _ - BS sin o €

dh ¢ sin I sin y cos y €

" |

a4l _ _ BS cos «
dh £ sin vy cos ¥y

The Eqs. (14-17) are most suitable for an integration using the method
of matched asymptotic expansions. We notice that, once the elements o ,
2 ,and I are known, we obtain the original variables €& , ¢ , and ¥

from
tan{(6 ~ Q) = cos I tan a
sin ¢ = sin I sin « . {14~18)

tan § = cos a tan 1
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14-3. INTEGRATION BY DIRECTLY MATCHED ASYMPTOTIC EXPANSIONS

14-3.1. OQuter Expansions (Keplerian Region)

- The Eqs. (14-17) are expressed in terms of the outer variables. The
outer expansions are introduced to- study the limiting conditiom of the solu-
tion in the outer region where the gravitational force is predominant. They
are obtained by repeated application of the outer limit, which is defined as
the limit when € + 0 with the variable h and other dimensionless quan-—
tities held fixed. -

We assume the following expansions

[~
it

uo(h) + aul(_ﬁ) + ..

i)
u

qq(R) + isql(h) + ..

Q
n

ao(h) + t-:ul(h) + ... (14-19)

o]
i

ﬂo(h) + eﬂl(h) + ... -

=]
}

= Io(h) + sIl(h) + ..

Fron Egs. (14-17), the differential equations with zero order of & are

dh = (1 +h)
q . _q2
dq 0 0
0= - ——= (L ~—)
el (1+h) Uy
dao 1

(14-20)
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Th2 solution of this system is

uo(l + h) =¢C

1
~ %z.g_(.lc_W__ C2(1+h)2
g 1
0 (- 21)
- g 2 :

uy = 1+ J 1 - C1C2 cos(ao - C3)_

g = G

I0 = CS

where the Cn are constants of integration. The first-order and higher-order
solutions are all equal to zero because at high altitude, in the limit the

atmospheric density is zerc and the motion is Keplerian.

14-3.2. Imner Expansions (Aerodynamic—Predominated Region)

The inner expansions are introduced to study the limiting condition of
the solution near the planetary surface where the aerodynamic force is pre-
dominant. They are cbtained by repeated application of the inner limit, which

is defined as the 1imit when e ~» 0 with the new stretched altitude

h =

m

(14-22)

and the other dimensionless quantities held fixed.

We assume the following expansions

= uﬁ(h) + aul(h) + ...

u =
q= qo(h) + eql(h) N
o= &0 () + e;l(ﬂ) F... (14-23)
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0
I

&O(h) +e ) +. .. (14-23, continued)

H
i

iodb +-sildb ...

From Eqs. (14-17), the differential equations with zero order of e are

duo . ZBuO(l + A tan YO) e_h
dh sin v

dq >

—:9- = - }\Be-h

dh

d; B8 sin ; -
0 _ L P S (14-24)
dh tan IO sin v, cos ¥,
dﬂo ) B§ sin oy e_h
dh sin IO sin vy, cos ¥,

dIo BS cos 2 _£

- = = - e
dh sin Yo €°5 Yq

The solution of this system is

u. = .t e [—-3391
0 = Y9 EXPLIT TR

99

sin oy sin I0 sin C3 {(14-25)

cos o, = cos C3 cos(C4 - QO)

~
-

cos T.. = cos C coé{g 1o [tan(E-+'IQD] +c }
0 3 x 08 2 5

where the Cn are constants of integration.

14-3.3. Asymptotic Matching and Comﬁosite Expansions

The constants of integration Cn in the iomer expansions will be determined



by matching with the outer expansions.

14~-11

In this problem, matching is accom~

plished by expanding the inner solutions for large h , expressing the re-

sults in terms of the outer variables and matching with the outer solutioms

for small h .

The outer solutions, Eqs. (14-21), become for small h

On the other hand, the inner

~ "2
clc2 exp[-

~ ~

Cy

-

sin ao sin .T.0 =

~ -~

cos ao cos 03

]

cos C

cos 10 3

i
/ﬁ Cy

2 - ClC2

C. -1
cos ™t (2L ) + ¢, (14-26)
J/l - ch2

G,
Cs

solutions, Eqs. (14-25), become for large h

%-cos— 02]
sin 63  (14-27)
cos(C4 - QO)

& I 1 -1 = -
cos{i-log[tanfz-+ 5 cos Cz)] + 05}

Matching Eqs. (14~27) with Eqs. (14-26) provides the constants C_ In terms

of the constants Cn .

We have
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‘/c

- - .2 =1 / 1
C, = 2 - C,C,) explt cos o ——i—]
1 172 A /2 — (',':]‘C2
- I o
/ 1
C = jo——————
2 /7 - c,C,
- 4.6 -1
sin C3 = sim C5 sin[cos ~(——————) + 03] {14-28)
5 -
‘ 1 - Clcz
E " 4. 61 .
Cl} = gos {cos[cos " Yy + C3]/cus 63} + C{}
2
Ji - C7C

1°2

/G
-1 - 8 T
5 = cos ~[cos Cglcos Cp] - 108[‘:&“(% +% cos l/ 2 -101(12)']

[y
u

Hence, the constants Cn are expressed explicitly in terms of the constants

Cn . Substitution into Egs. (14-25) gives the inner solutions. It is con-

venient to use the following motation. to write these solutions in a symmetric

form. Let

4,6 -1
sin ¢, = sin Cys sinfcos = ) + 03] (14-29)
1l - 0102

c, -1

1

8, = cosﬂl{cos [cos—l( ) + Callcos $.4 + CA

2
1 - 0102

x = Cs
The constantg with subscript #%* are expl:fcit functions of the constants C11

Then the inner solutions are
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9 ~
cos ¥ -
- 0 2
= el - 1)
cos Y,

l:‘.lo ¢

cos Y, = cos v, + ABe D

sip’uo sin I0 = sin ¢, (14-30)

~ -

o8 @y = o8 ¢y, cos(, - 90)

~ ~

_1 Cos Io _1,c08 L, s 1. Yo 1 Yz
cos (cos ¢*) -~ cos CE;;—E;J = -i-log[tan(-z--i---i--)/tan(4 +‘§~9]

From the Eqs. (14-15) and (14-16) the meaning of the starred constants
can be seen. The Eqs. (14-30) show that during the phase of aerodynamic turn-
ing, the latitude ¢ and the longitude 6 remain constant. The last equa~
tion gives the change in the heading bw during that phase.

The composite expansions, uniformly valid everywhere, can be constructed
by the method of additive composition. The additive composition is obtained
by taking the sum of the inner .and the outer expansions, Fgs. (14-30) and
(14-21), and subtracting the part they have in common (the imnner limit of the
outer expansions or the outer limit of the inner expansions), Egs. (14-26) and
(14-27). Thus, for the variables u and <y , using subscript ¢ for the com-—

posite solution,

~

e n N cos” Yy
u (1 + h)

o

exp[-f—(vfarc - ;'0)) . (14-31)

*

cos Y,

and '

h
S - + 2B e
2 . ADE

cos Y, = COS Yy 3 7
2 cos T*(l + h) + (u* - 2 cos Y*)(l + h)
- {14~32)

For the angular variables o , © and I , the composite solutions are

N\

C- 5



- _ c, -1
g = ¢, +o. - C, —~ cos {——)
c Q a 3 o
2
. /1 Gy
R =0 +0. -C (14-33)

Hence, from equation (i14-21}, ﬂc = . and Ic = IO . From the last of the

Eqs. (14-30),

1 cos I, s I Yo R
cos I = cos ¢, cos{cos (o2 qy’*) +-X-log[tanQ§4-E—jltangfi-EFJ]}
~ (14-34)
For the angle ﬂc = QO s the second Eq. (14-15) yields
_1 tan ¢,
SZC = 9* - sim [E;I“l- Ic] (14-35)
where I~ is given by Eq. (14-34)
Finally, the angle e, is giveh by
in ¢ cos Y u
T Ty * -1 % *
@, = sin [Sin T ] + cos [ (1 5 D]
c 2 2 i
ug, + (1 - 2u,) cos’y,
(14~36)

cos Y, (u, = 1)

2 2
//;; + (1 - 2u,) cos”y,

- The composite solutions are expressed explicitly in terms of the five

- cos [

constants of infegrat;on Y, 5 Yy » 9 s 6, and I, . TFor computa-
tion in terms of the independent wvariable h , the angle Yq is first cal-
culated from the second Eq. (14-30) . Subsequently, we obtain U,y Y,

and I ., and finally £ and o .
c . c c

14.3.4. Solution For the Planar Case

Wheﬁ § = 0 , the motion is-planar. The trajectory remains in the

equatorial plane and the variable « is the same as the longitude 6 .
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The composite solutions for uw and vy , Egs. (14-31) and (14-32),

remain valid. The composite solutijons for 8 ¢an be seen to be

cos v, u,
cos(6 - w) = 7% -
. 2 2
Juy * (1 - 2u,) cos™y,

1) (14-37)

wvhere w, 1is a constant of integration. The three comstants of integration

U, » Y, and w, in Egs. (14-31), (14-32) and (14-37)} for the planar case

*

are evaluated using the initial conditions LTS and Bi at hi .

It is obvious that when CL =0 , (A=0) , then 8§ =0 and the

ballistic entry is planmar. In this case, solution (14-31) seems to be inoper—
ative. To show that this solution is valid for all ranges of 1 we shall
obtain the solution for ballistic entry using a limiting process. The second

~

of the Egs. (14~30) shows that, whem A >0 , Yo * Y& - Hence we write

that equation in the limit . - -
- ~ . Y* - YO . Y* + YO ~
ab eos Y, ~ €os Y, ~ sin(: 5 ) sin( 5 _ Ya < Yp
e = E = 2 A = Sin Y*[ A ]

By substituting in Eq. (14-31), we have the solution for ballistic entry,

A0
u ~h/e
e___h_ 28e -
u, T (@1 +h) + exP[sin Y ] (14-38)

This solution can also be obtained by reintegrating the imner equations

with A = 0 and then matching with the outer solutions.

14-4, APPLICATIONS

For the indtial conditions to b; satisfied identically, the five con-
stants of integration Cn s or equivalently the five constants with sub-
script * , as defined by Eqs. (14-29), are to be evaluated by ﬁsing the com-

posite solutions. Let the conditions at hi be

usu, o, Y Y, o, a=a , =8 , I=1 (14-39)
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With these conditions in the composite solutions, the constants u, , v, ,
¢* s By and I* are obtained by solving a set of transcendental equations
which can only be done numerically. Another obstacle arises when, as is a
common practice, in order to reduce the mumber of prescribed initial values,
one - takes thé initial (;i 5 ?i) plane as the reference OXY plane with the
axis O0X along ?; . In doing so o, = 0 and Ii =0 . Butwhen I=0 |,
the longitude of the ascending node £ is not defined, ;s evidenced by

Eq. (14-35). This.singularity can always be avoided by rotating the OXY
plane through a fixed and arbitrary angle, say 45° , about the ;i axis.

Then the Initial conditions at hi are

0 , I,=45° (14-40)

3 Ysyiy a, =0 , @ i

i i

The equivalent conditions for the variables 6 , ¢ and ¢ are

]

6, =0 , ¢.=0 , y, =45° (14-41)

i i i
This method of directly matched asymptotic expansions has provided
highly accurate and useful solutions te less general atmospheric trajectory
equations, Ref. l.‘ In that work, extensive numerical calculations demonstrated
the accuracy compared with exact numerical solutions. The method was also
proven valid for some restricted problems in Refs. 2 - 4. The presgnt devel-
opment which is based on Ref. 5 has accomplished the wedding of the exact
atmospheric trajectory equatious, using‘fhe powerful modified Chapman vari-
ables, with the method of directly matched asymptotic expansions. Numerical
experinents usi;g the composite solutions obtained show that the resulting
golution is accurate and reliable. Thus, this analytdical solution for atmo-

spheric .entry trajectories, in many ways completes the search for explicit,

analytic, and yet accurate, solutjons to this broad class of problems.
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Before we close this chapter, one pertinent remark is in order:

In using the method of directly matched asymptotic expansions, the
logical choice for the independent variable is the dimensionless altitude
h . From the composite solutions, it is seen that the ballistic coeffi-
cient B , defined by Eg. (14-11), has to be prescribed. Hence, it seems
that the solutions apply to a particular vehicle and the generality of Chap-
man's Z wvariable is lost. This is true for the previously developed solu-
tions concerning restricted cases (Ref. 1 - 4). In the present theory, the
dimensionless ballistic coefficient B , and the dimensionless altitude
h are related to the Z function through the explicit relation (i4—12).

Evaluating that equation at hi s yields

h
A Fn) -+
Zj‘__ = B/Tl'-‘ e & (14-42)

Equation (14-12) and its initial condition (14~42) provide the link between
the two theories, the numerical theory in Chapter 13 and the present analytical
theory.

It has been explained in Chapter 13 that the selection of the imitial
value Zi depends implicitly on the ballistic cvoefficient of the vehicle,
since the way that the dimensionless deceleratlon due to atmospheric force
builds .up to a sensible value, £ = 0.05 , or the altitude where the variable
u sgarts to decrease, are functions of the ballistic coefficient. 1In the
unified theory, both the altitude and the ballistic coefficient are higden in
the universal variable Z .

Now, assume a Z function has been generated for a certain universal
entry trajectory, with U5 Yy s 4 prescribed. Then we alsc have the

initial- value 2Z To compare this solution with the solution developed

;-
in this chapter we can choogse a standard value for hi . Then, the
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coefficient B can be evaluated by Eq. (14-42) for use in the analytic solu-
tion. At each instant, the universal Z function is given by Eq. (14-12).
In conclusion, we consider the case of ballistic entry. Figure 14-3 plots
the deceleration 30 Z u for ballistic entry from circular speed E; =1 ,
into the Earth's atmosphere, at different small flight path angles. The

figure is taken from Chapman's report (Ref. 6), and as has been shown in Chap-

ter 13, in this case Chapman's analysis is very accurate.

18— . 6°
16 I~
14 -
— yi=4°
12—
3°
N IO
I> 20
O °
ot 8]
8 — o
i
5 -
41— f L/D=0
. lo/
2P~ Oo/
I ! [ l
0 02 C4 06 0.8 i0
u

Fig. 14-3. Ballistic Entiies Iato the Earth's Atmosphere
From Circular Speed
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Omitting the subscript ¢ for convenience, we write the compesite soclutions

_h
7 = B/ 1 : h e ©
) - b
u h 2Be © - - )
W, T T 1+%h *+ exp[ sin v, ] (14-43)
/ 5

COS Y = €OS Y,
/2 cos Y*(l-i-h) + (u ~ 2 cos Y*)(l+h)

We are interested in t’ne maximum of the deceleration a/g = fﬁ? Zu
Since Z u=Zu , the equation for maximum deceleration, d(Zu)/dh=0, is

written expliecitly as

_h
1 1 . b b 1 _i_ZBe%
A+h)'d+n  20+hH) ¢ 20 +h) e esinvy,
_h (14-44)
€
2 B e
p[E sin Y*]
Since € is small
_h _kh . b
h 283e 5 2Be © 2Be °\
I+ " exp( sin vy, > = - sin v, gxp( sin ¥, ) (14-45)

Using the equation for u , we have the simple relation, wvalid at the

staticnary point of the deceleration

11:-—- = x exp(~ x) . " (14-46)
E-
where
_h
€
x=-2Be Y (14-4T)
sin vy, .

For steep entry, the gravity effect can be neglected, and from the solu-

tion for u , with X = 0
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=¥ o oexp(- x) (14-48)
x Uy
1

C.’IC-‘

Substitution into Eq. (14~46), provides the simple solution x = 1

and

u 1
. e = 0.367879 (14-49)
R
In Fig. 14-3, it is seen that, as - Ys becomes larger, the value
u = ul/ 2 for peak deceleration becomes larger reaching the limit
=2 2 0.606531 ul .
1 i .

The fact that this is the limit can be seen by considering the fune-~

tion u/u* as defined by Eq. (14-46), 1Its derivative is
d ,u . _
EE(E) = (1 ~ x) exp(- x) (14-50)

Hence the function reaches its maximum at x = 1 ag seen in Fig. 14-4.

For shallow ballistic entry, we rewrite the Eq. (14-45)

(A - x) exp(- x) = I _}: i (14-51)

valid at the point of maximum deceleration.
From this eguation we see that x <1 , and since h is small, x
remains near unity. Using the definition of Z in Eq. (14-47) we can write
x=-—22 (14-52)
/Br sin Yi : .
Now, in t‘he general formulation in Chapter 13, from Eq. (13-76), with
A =0 , we have the condition at the point where maximum deceleration occurs

1= et 2 (14-53)
/8r sin ¥
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Fig. 14-4. wu/u, As a Function of =x For
Maximum Deceleration During Ballistic Entry
From this equation, for maximum deceleration,

sin v,

which should be compared with Eq. (14~52). This relation sheds light on the
meaning of the constant vy, . It is not the initjal flight path angle, but
it is the angle near which the maximum deceleration occurs, and is in general

largexr than Yi
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The coustants of integration u, and vy, are calculated by applying
the initial conditions to the solution (14-43) at h="h; . Since the selec-
tion of hi is rather arbitrary the initial conditions may not provide a

solution for u, and vy, . TFor example we consider the case where ¥ =0 .

%
Then
u {1 + hi)2
cos Y, = {(14-55)
¥ ou, + Zhi(l + hi)
For Y, to be real
2({1 + hi) hi
u*<-?—_l_—'ﬁ-;—=l+“2~ + (14-56)
Since
s AN o1
u, i+ hi 1+ hi
we have the conditiom
hy
vy <] - 7 (14-57)

For grazing entry with deceleration building up, that is, ome-pass ballistic
eatry, the entry speed must be subcircular.

Strictly speaking, for Yy = o , u; = 1, Zi =z 0 the entry process
is by orbital decay. This topic will be discussed in detailiiu Chapter 15.

For the last phase of entry we can integrate directly the Egs. (14-1), with

dZ _ _
' s Br Z v
U _ /By 7u - (14-58)
ds
dy _u-1
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Changing the independent variable to u

a _ Jer y
du 24
{14-59%)

dy ., _1-1u
du Tz Wl

Using a monotonically increasing variable p by the transformation

p= e 2 (14-60)
we obtain
& . Ty
d
(14~61)
dy _1-e™
BT
By eliminating ¥
2 2u
2 Z
dyu
with the initial conditions
Z(0) =0 , 2'(0) =0 (14-63)

This is precisely Yaroshevskii's formulation as discussed in Chapter 10.

It has been found that, in this case, the peak deceleration occurs at

we=0.83 , wf/?-3Y=0.43 : (14-64)

H

which is consistent with Chapman's numerical calculation in Fig. 14-3.
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CHAPTER 15

SATELLITE ORBITS IN A PLANETARY ATMOSPHERE

15-1. INTRODUCTION

In Chapters 10 ~ 13, we have considered, among other types of trajec- s
tories, the special case of the trajectory of a vehicle subject to pure aero-—
dynamic drag. If the periapsis altitude of the initial orbit is high enough,
the vehicle will make several passes through the atmosphere before completing
its entry.

On the other hand, for very high periapsis altitude the vehicle will stay
aloft for several days, weeks or even years before the effect of aerodynamic
drag has reduced the lowest altitude far enough into the sensible atmosphere
to effectively initiate the entry trajectory. During this time the trajectory
of the wvehicle is essentially a Keplerian orbit subject to a small perturbing
effect due to the resistance of a tenuous atmosphere. The analysis of such a
trajectory is the subject of the present chapter.

In the early days, development of the theory of flight near orbital speed
inside an atmosphere was conducted in two separated aspects. On the one hand,
researchers analyzed the small perturbations of satellite orbits at wvery high
altitude. The mathematical tools are perturbation theories in celestial mechan-
ics based on Lagrange's equations for the variations of orbital elemenés. The
space vehicle, usually referred to as a satellite, is not intended for recovery.
The main subjects of concern are first, its life expectancy, and second, the
slow variations of its orbital elements. The variablés of interest are primarily
the major axis and the eccentricity of the osculating orbit. On the other hand,
engineers and sclentists who were concerned with the safe recovery of an entry

vehicle concentrated thelr effort on the study of the deceleration and heating
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during entry. The elements of prime consideration ate the position and the
velocity of the vehicle, both varying rapidly. The nice behavior of the near-
Keplerian orbit is no longer available, and strong physical assumptions were
made to such an extent that, although describing the same phenomenon, namely
flight of an object inside a planetary atmosphere, the equations became totally
different., The gap got wider as the two theories became more and more sophis- |
ticated. Now the two groups, one consisting mostly of mathematicians, and one
consisting mostly of physicists, seldom reference the other group's work.

With the objective of providing a unified theory for flight inside a
planetary atmosphere, we have formulated a set of universal, exact equations
in Chapter 13. These equations have been successfully applied te the study
of planetary entry of a space vehicle (Refs. 1-2), and to optimization of such
an entry (Refs. 3-4). In this chapter we shall present the necessary trans-
formation such that the eguations can be used for analyzing the slow variations
of the orbital elements while the wvehicle is still in the near wvacuwm. This

successful wedding is necessary since future space vehicles are designed to

~stay for an extended period in orbit as satellites, and also to be recovered
" safely after a flery entry which is followed by a glide, an approach, and a land-

ing on an airfield.

15~2., TORCES ON A SATELLITE I¥ ORBIT
The satellite and the planet are. assumed in two-body relative motionm.
For a spherical planet, the gravitational force is an inverse square force of

attraction with acceleration
_u
g(r) = = (15-1)
r

where r dis the distance from the satellite to the center of the planet and

1 the planet gravitational constant.-
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The atmospheric force is in the form of drag acting in a direction oppo-

-5
site to the velocity VA of the satellite relative to the ambient atmosphere

pscDiri (15-2)

b

DA =

We shall use a strictly exponential law for the demsity of the atmosphere
p=p_e 0 (15-3)

where 8 is now considered as a constant

_ 1 -
B =% (15-4)

The quantity H which has the dimension of a length, is the scale height, and
subscript Py denotes the initial periapsis condition.

The equations of motion are written with respect to an inertial frame with
origin at the center of the planet. Let ¥ be the absolute velocity of the

satellite

e S S
V=Y, +V, (15-5)

where %é is the velocity of the ambient air relative to the inertial frahe
(Fig. 15-1). We shall assume that the atmosphere has a uniform rotation of
angular velocity % about the South-North axis taken as the Z inertial axis.
Tﬁen

Ve = rwv cos ¢ - {(15-6)

where ¢ dis the latitude of the point M representing the satellite.

Let ¥~ be the angle between $e and ¥V . Then by squaring Eq. (15-5)

V2 = Vz + V2 - 2¥V cos ¥~ (15-7)
A e e

> ) .
The vector v, is in the local horizontal plane. Also, near the peri-

apsis where the aerodynamic drag is most effective, the satellite travels nearly
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Fig. 15-1. Notation
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A

horizontally, that ' is the angle Yy between the velocity ¥ and the horizontal

plane is small. Hence, following King-Hele (Ref. 5), we can evaluate approxi-

mately the relative speed VA in terms of the absolute speed V as follows.
First, the angle ¢~ between ﬁé and V is seen as nearly equal to

the angle ¢ between 3; and the projection %ﬁ of % on the local horizon-

tal plane. This angle ¢ , éalled the heading, is related to the latitude b

and the inclination i of the osculating orbital plane by the well-known rela-

tion
cos P cos ¢ = cos i (15-8)

Therefore, we have approximately
Ve cos 1”7 = Ve cos U = rw cos ¢ cos P = rw cos i (15--9)

Upon substituting Eqs. (15-6) and (15-9) into Eq. (15-7), we have

Vi = Vz(l - %E cos i)2 + rzwz(cosz¢ - coszi) (15-10)

2
The rotation of the atmosphere is generally slow so that the term w  can be
neglected. Tn the small term rw/V , it is appropriate to use an average

value. King-Hele suggested using the value rp /Vﬁ at the periapsis to re—
0 *0

place r/V . Finally, the inclination i , which usually varies by less than
0.3° during a satellite's life, may be taken equal to its inditizal value iO .
“ Then, we have King-Hele's expression

vi = £V (15-11)

where the average constant value £ is

W
2

f=(1 - cos io) (15-12)

Pg
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Thus, In terms of the absolute speed, the drag force is

-t 2 -
D, =% pSECV (15-13)

S
acting opposite to the direction of the velocity VA of the satellite relative

to the ambient atmogphere.

15-3. THE EQUATIONS OF MOTION
The set of dimensionless universal equations for the motion of a vehicle
inside a planetary atmosphere has been derived in Chapter 13. For a locally

exponential atmosphere, we have the equations with the notation in Fig. 15-1

a _ 1, 1 48
ds gr( -2—8—-1:-1- Zdr)Ztany
28
C .
%lsl=—-——-——2cf§§zu(1+-£cosGtan'~(+————-—siI}_Y)
Y Cp 2VBr Z
2
g_y=/_'z L s o + 898 Yry _ cosTyy
s cosYCD W u
(15-14)
deé _ cos ¥
ds cos ¢
%S = gin ¥
2
d _ VBr ZC—— _ cos’y cos Y tan ¢)
ds cos Y D YBr Z
The variables u and Z are the modified Chapman's variables
2 2 pSG — -
- Vcos ¥ - D /r _
u = ——EE—F— s Z = “5a /B (15-15)

The independent variable s is the dimensionless arc length from the initial

time

1))
HI
=
H |

cos vy dt (15-16)
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The variable € is the longitude, and the angle ¢ , the "bank angle,” is

the angle between the vertical plane passing through the velocity, the (? s %)
plane, and the plane containing the aerodynamic force and the velocity, the

(ﬁk s ﬁ) plane. As has been mentioned szbove, the aerodynamic force is in the
direction opposite to the velocity %' ., the relative velocity of the satellite

A
with respect to the ambient air. Finally, Cp and Ch denote the coeffi- .
cients of the aerodynamic forces resolved in the direction perpendicular and
parallel to the absolute velocity v .
The equations (15-14) are convenient for analyzing the entry portion of

the trajectory. TFor satellite orbits, it is more advantageous to use the orbit-

al elements. First, we use the relations

cog & cos Y = cos 1

cos ¢ sin ¥ = sin i cos o (15-17)

cos o = cos ¢ cos(® ~ Q)

to transform the last three equations (15-14) into

= s C
%g_: 1 - VBr Z sin GCELD oin O
. tan i.cos"y D

. C
%2. IEEiEEjEElJEC_EQ sin o (15-18)

Il

sin i cos ¥

— C
%;_= VBr chos u(EL) sin o
S cos Y D

From Fig. 15-1, we notice that i is the inclination and & the longitude of
the ascending node of the osculating plane. The angle o is the angle between
the ascending node and the position vector. The equations (15-17) are the

usual relations in spherical trigonometry.
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For satellite motion, we have a simplification and at the gsame time, a
complication. The simplification is that there is no lift force. The complica—
tion is that the drag force is modified by the factor f as explained in

section 15-2, and it is directed opposite to the velocity ﬁA and not to the

absolute wvelocity ﬁh .
Figure 15~2 is the aerodynamic force diagram used in Chapter 2 im derdving:*

the general equations of motion, to which we have added the veloeity %A with

- 2>
respect to the ambient air and the drag force DA opposite in direction to VA .
5
In the present situation, we remove the lift force L and replace the vector

drag B by the force 3A . This force 3# can be decomposed into one com—

ponent in the orbital plane and one component normal to the orbital plane.

Since %é is small, ﬁA is nearly aligned to ¥ and the component of 3A

in the orbital plane can be considered as directly opposite to v , With mag-

nitude DA

bital plane has a component along the ¥y axis and a component along the %

+
as given by Eq. (15-13). Rigorously, the component of DA in or-

axis (Fig. 15-2) with the component along the ¥y axis nearly equal to DA
and the 1ift component along the Xq axis negligible for all practical purposes.

To obtain the component D. of D orthogonal to the orbital plane we find

N A
the projection of
>
x 1 Va
D, =~ 3 PSEC, Vz 3; (15-19)

. >

By the vector relation (15-5), since %’ is in the orbital plane and since VA
S

makes an angle ¢ with the orbital plane, the projection of VA on the normal

-5
to the orbital plane is the same as the projection of Ve whilch has magnitude
Vé sin ¢ = rw cos ¢ sin ¥ = rw sin i cos o (15-20)

+
Hence, the wvector D.. has magnitude

N
1 v
Dy = E-pSfCDrw sin i cos ¢ i; (15-21)

' - . {15~22
DN—LE'GS-F/zC}VFW%L coe R )
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Fig. 15~2. Aerodynamic Forces
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and its direction is opposite to the vector L sin ¢ in Fig. 15-2. Theusnd

result of the analysis is that, in the Egs. (15-14) and (15-18) we replace C

D
by the modified drag coefficient fCD » we delete the component CL cos O
and replace the component CL sin ¢ by
-1
. _ 2, XWy . . -
CL sin 0 = - f CD(V ) sin i cos o (15-23)

Finally, the vardiable Z

most effective in analyzing the entry phase of the vehicle.

, called the modified Chapman Z function, is

While the wvehicle

is still a satellite in orbit we use it in the form

B(r. - 1)
T Py
Br Z =2z,(-) e (15-24)
Pg
where the dimensionless constant ZO is
Sfc r
: ppo D¥p,
Z0 = > {15-25)

We can now rewrite the Egs. (15-14) and (15-18), introducing the equation

for r/fr
0

d , r T
E;G;—O = ﬁ;—ﬂ tan v

to replace the equation for 2

0 Po
B(r_ =~ 1)
du _ . _ 220u N Py
ds ~ T B R Y T Tos yr_ 7
P

dy _ 1 - C082
ds u

T WZO %- B(r -1)
do _ 1+ Pg ( r ) cos i sin o cos o e Py . (15~26)
ds r 172

uf/rP g u “cos ¥
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T wZO g- B(r -1)
aae _ _ Po r, sin o cos a 0
ds Vuf/rp 2y uljzcos Y (15-26, continued)
0
5
r_ WZ = B(r - 1)
di _ Py 0 T 2 sin i c052 o Py
ds = T L = ) 1/2 €
Yuf/rp g uw “ros v
0

15-4. THE PERTURBATION EQUATIONS

The Eqs. (13-26) are the bridge between satellite theory and entry theory.
As a matter of fact, they can be used to follow the motion of a vehicle subject
to gravitational force and drag force of a uniformly rotating atmosphere and
planet for its entire life in orbit until its entry and contact with the
planetary surface. The accuracy depends on the readjustment, for each layer
of the atmosphere, of the constant value B

The variables o , 2 and i which are orbital elements are related
to the entry elements 6 , ¢ and ¢ through the relations (15-17). On the
other hand, the variables r , u and vy , which are the entry variables,
can be transformed into the orbital elements through explicit relations.

Consider the osculating orbit, which is the orbit the vehicle would fol-
low if at any time the drag force suddenly vanished., Putting ZO =0 in

Eqs. (15-26), we have

4, __Tr
ds(r ) = F o rany
g Py
du _ _
ds = u tan v
dy cos2
as =1 ~ " (15-27)
de _
ds i
4q _
ds 0
ai_

ds
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The integration is simple and we have the general solution

o2y o U
sy 2u - cl
€2
T o= —=
u
u=1+% V1 ~ ¢y cos(s - c3)
(15-28)
s =g+ c4
Q= CS
i= 06

where the €, .are constants of integration. We. see that s is equivalent to
o and actually we only have 5 constants of integration. The last comnstant
of integration is obtained by integrating the time equation, Eq. (15-16).

In the first three equations (15-28), we evaluate the constants of inte-

gration by taking the origin of time at the time of passage through the peri-

apsis.
2 u2
cos ¥ = 5
2u - (1 -e7)
u=1+e cos(ec - w (15-29)
. a(l - e2)

T 1+ e ceoso - w)

These three equations provide the link between the entry -variables r ,
u and v and the semi~major'axis a , the eccentricity e and the argument
of pexriapsis, w®w , which are the orbital elements used in the theory of orbits.

During the phase in orbit, ZO is small and the orbital elements wvary
slowly. 3By taking the derivatives of Egqs. (15-29), considering a , e and

w as varying quantities and using the Egs. (15-26) for the derivatives of r ,
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u and 7Y , we have the perturbation equations for a , e and w
First, for the eccentricity e we have

27 u’ Blr, -

; 9 p

de _ 0 Co58 Y r 0 _

s = 3( 1)6;——) e (15-30)
e cos™yY P

We present the equation in this form to show an interesting behavior of
the eccentricity of the osculating orbit. It is a general belief that the ec—
centricity decreases continuously under the action of atmospheric drag. But
this is the secular effect. . During each revolution, the flight path angle
passes through a maximum and a minimum as seen by the third of the Egs. (15-26},
and by Eq. (15-30) it is seen that, at the same time, the eccentricity passes
through a minimum and a maximum respectively.

Next, we shall use the more familiar eccentric anomaly E to replace s
as the independent variable in the perturbation equations. The following rela-

tions are obtained.

2
x_ a-e) -1 -
a 1+ e cos(o -~ w) 1-ecosk
2
I € - -
b N cos E (15-31)
2

coszy = (1-e)

(1 - e cos EY(1 + e cos E)

Also, it ig seen that between s and E we have the differential relation

ds /1 - e

dE 1 - e cos E (15-32)
Hence, the equation for e thas the form
3 BG, -
de _ 2y, a L+ e cos E 0. _
i - 220(1 - e )C;——D cos ngj::;1§;;3? e (15-33)

Py
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Similarly, the variation of the semi-major axis is governed by

Blr -~ 1)
2 372 )
da a~ (1L + e cos E) o 0 (15-34)

S Y
(1L - e cos E)ljz

dE 0r
Po

Under the same tramsformation, the last three equations of the Egqs. (15-26)

become
Fi Ky 1 B(x. -1)
dE dE 1 - e cos E e ‘p 5in e cos & cos e
PO ‘
rp WZO 5 1 B(r
%%= - 0 \’.ra )sz(l - & coSs E)z (L + e cos E)2 sin o cos o e
‘/1-lf/r \/l - e2 Py
Po
5 5 1 B(r
r Wi = =2 = P
di Po 0 2 2-(1 + e cos E)2 sin i cosza e 0

= ZCra)(l-ecosE)
Vﬁf/r J& - P
Po

(15-35)

15-5. ORBIT DECAY

The equations (15-33) - (15-35) give the slow variation of the five orbital
elements a , e , ® , £ and i . In the present chapter, we are con-
cerned with the variation of the semi-major axis a and the eccentricity e of
the osculating orbit. As seen from Egs. (15-33) and (15-34), under the dissipa-
tive effect of the drag, the major axis decreases continuously while the eccen-—
tricity, although having an oscillatory behavior, alsoc decreases secularly with
-the time. We say that the orbit undergoes a contraction and as e de;reases,
tends to circularize itself. We shall use the method of averaging for the inte-

gration of the equations.

15-5.1. The Averaged Equation

First, we have for the radial distance

a(l — e cos B)
ao(l - eo)

r (15-36)

r
Py

]

Py

..r)

1
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We write the exponential function in the Equations
exp[B{r_. - )] = exp[B(a, - a - a,e.} + Bae cos E] (15-37)
Py 0 070
Along each revolution, a is nearly constant while the varying quanfity
fae cos E provides the fluctuation in the air density. This leads to a natural

choice of the wariable
x = Bae (15-38)

to replace the eccentricity e , (Ref. 5).
By taking the derivative of Eq. (15-38) using the Egs. (15-33) and (15-34)
we have the equation for =x

B(r -1

P
1+ ecosE e (15-39)
(e + cos EMT (o7

b=

2
dx _ ZZOBa
dE T

Py

The new dimensionless variable x behaves like the eccentricity e ; that is,
during each revolution x passes through stationary values when cos E = - e
But, on the average, = decreases with the time. Since the decaying process is
slow we can use an averaging technique (Ref. 6) applied to the right hand sides
of Eqs. (15-34) and (15-39) for a and x

For the equation for a , we have the averaged equation

da a2 1 Zn
e 220 ;;— exp[B(ao -a- aoeo)] E;-f
0

(L + e cos E)3/2
0 (1 - e cos E)ll2

exp(x cos E) dE

* (15-40)

For small eccentricity, the integrand can be expanded in-power series

in e . TUpon integrating, we have

2
da _ ., a -
TRl 220 ;——-exp{B(aO - a aoeo)][IO + 2eI1
Pg (15-41)

3 2
+ ;& (IO + 12) +

1 3

7 e (31, + I, + 0(34”
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where In(x) is the Bessel function of the first kind and of imaginary argu-
ment, of order n
1 27
I(x) =% f cos nE exp(x cos E) dE (15-42)
n 2 0

Similarly, the averaged equation for =x is

dx _ Ba exp[Bla, - a eI, +5 L 7 (31, + IL,)

Po (15-43)

s L 16(71 +812+I)+0(8)]

2
"8" {11 Il+ I.) +

The Eqs. (15-41) and (15-43) were given by Cook, King-Hele and Walker. As
ghown in Ref. 5, they truncated the equatioans to the order e4 , formed the
equation da/dx and integrated it separately for the cases where x is very
large and x very small. We shall integrate the equation without making that
asymptotic simplification, thus obtaining the solution uniformly valid for any
E

First, by dividing Eq. (15-41) by Eq. (15-43) and expanding the ratio in

power series in e , we have

da _ 1 - 12 2
By =Yg T3~ 3y Yo¥o) + 3§ € [2y53yy + ¥y) 29y,
- 2y2 - y0y3] + e [ 32 + 113y0 + 38y0y2 YoV s

* 23’3 + 53’33'3 + 259,93 = 2y5Qyy + y2)3] + 0(e™ (15-44)

where we have defined the ratios of the Bessel functions

[

Y, 2 . n#1 (15-45)
L

¥or x > 3 , Cook, King~Hele and Walker integrated this equation by
ﬁhnAWVq

using the asymptotic expansions of the fermatien yh(x) . In this case, the

right hand side of Eq. (15-44) has a very simple form and the major axis a is
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obtained by quadrature. Mathematically, the method of integration they used

is not rigorous since on the right hand side, the eccentricity e is a function
of x[ and a b& definition (15-38), so that the egquation is actually a non-—
linear equation in a . We shall arrange the equation in a form where the

Poincaré method of perturbations can be applied (Ref. 7).

The Bessel functions satisfy the recurrence formula

2n

I G-I, () =T (%) (15-46)

Hence, any function yn(x} can be expressed in terms of yOCx) and x . For

example
YZ(X) = YO "';2;
X
8 48 24
&) = - -3yt g
p:4 X
Let
' z =& (15-48)
2g

be the dimensionless semi-major axis. Then, from Eq. (15-38) we have for the

eccentricity
e =g = (15-49)
Z
“where
e T i (15-50)
Bao

is a small quantity of the order of 10_3 . Then, we can write Eq. (15-44)

as an equation in 2z = a/ao



15-18

2
2 7y
dz _ 2%, .70 2 3 x 1 0 3
= = + e z(2 + - 2y0) + & 2zz(x - 8y0 -5 *+ 8y0)
3
3 ¥ ¥ b ¥y
& x 1 2 0 0 0 0 4
+ e —-3(,—4+—2-+20y0—l0;+4—3—5_§+20§—-16y0)
2z X X X
+ 0(e”) (15-51)

We see that the true nature of the equation is a nonlinear equation. Since €
is a very small quantity we need not go further with the expansion, and to the
order of E4 included, the solution of this equation can be considered as the

exact solution of Eq. (15-41), truncated to the order e4

15-5.2. TIntegration by Poincaré's Method of Small Parameters

Poincaré's method for integration of a nonlinear differential equation .
containing a small parameter is a rigorous mathematical technique, proven to be
convergent for small values of the parameter ¢ . We assume a solution for =z

of the form
z = I skzk {15-52)

Upon substituting inte Eq..(15-51) and equating coefficients of like powers

in ¢ , we have the equatiomns for zk(x)

0
dx 0
4
ax - Y0
dz ¥y

2 _ X 0,2
dx 20(2 +x 2y0)

2

dz Xz 2 7y

3 ¥ 0 2, . %1 o 3 )
m - -z @t 2y} + Zzg( 8y, - 5 T 8%p) (15-53)
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dz, xzzl 1 73’5 3 . x Yo . 2..%1 %
& T3 G Wy e @ - G- )
2 0 2 0
0 0
3 10y. 4y, 5y°  20y°
X 1 2 0 0 0 0 4
+—2-—3(-4+ 2+20y0-—- T Y3~ a3t —16y0)
20 X % b4
(15-53, continued)
We also have the initial conditions.
zo(xo) =1 |, zl(xo) = zz(xo) =, .. =0 (15-54)

The integration of Egs. (15-53) is accomplished by successive quadratures.
Its success depends on whether or not the integrals can be expressed in terms
of known functions. It has been found that the following recurrence formula

is useful.

fo) v5 ax = - B g0+ foeo v e + JREL + 209 o ax (15-55)

where n# 0 and p(x) is any arbitrary function. To derive this formula,

we use the well-known relation

xIn(x) + nIn(x) = xIn_l(x) {15-56)
For n=1
I
R S § _
9= 71 + - (15-57)
1
and for n=10
I0 = Il(x) . (15-58)

Therefore, if Yo = IOJI1
I
Yo=T. -3 =1+ -y (15-59)

Now, consider
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n
Jp) d( ) EL““ 3 - f.Eiﬁﬁl yg dx

ar

=1 - — y .
Jp yg 1y0 dx = fp(x) yg 1(1 +459 ) dx = E n - 2 (x n dx

Rearranging this equation, we have the recurrence formula (15-55). Using these
relations we proceed with the integrations of the Egs. (15-53), using the ini-
tial conditions (15-54).

First, we have

. zy(®) = 1 (15-60)
and by Eq. (15-57)
xI_ (x)
2, = Log ——Ii(——) (15-61)
X0 1%%0

whetre Xy = Baoeo is the initial wvalue of =x.
With Zg = 1 , the equation for Zqy is

dz
2 2
& - =ty - 2y

Integrating

2, = xz + Log x Il(x) - ZIxyg dx {(15-62)

But, by the recurrence formula (15-55) with p(x) =x , an =1

2
2 .-
fxyo dx = %—-— xyy + 2 Log % I, &) (15-63)

so that using in Eq. (15-62) with its initial comnditiomn, we have

xIl(x)
z, = ZKYO(X) - 2x0y0(x0) - 3 Log ;BTEEEET (15-64)
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The integrations for obtaining 2y and - z , are performed the same way but
they are much more laborious. It is found that the zk(x) can be expressed

in terms of two functions

_ Tt
A) = x EZ?ET = xyo(x)
(15-65)
B(x) = log [xI;(x)]
We have the final solution
zo(x) =1
zl(x) =B — ZB0
zz(x) = 2(A - AO) - 3(8 - BO)
21,2 _ 2y 13, _ _ 2,2
24(x) = 5(x" - x5) - 57(A - A)) - 2(A" - A
3 2
+ 13(B - BO) - 2A(B - BO) +-§(B - BO) (15-66)
_ 3.2 2 YA 2,2 8¢p3 _ .3
24(:{) =-3 (x xo) + 3 (A AO) + 3(A AO) + 3(A 7A0)
T 4A (A — A — 2(xA — x2A)
.0 0 00
2 2
- (69 + 6A0 + 7x° - 19A - ATY(B - BD)
35 2 3 2
- E—{B - BO) - (B - BO) + 2A(8B - BO)
The semimajor axis of the orbit under contraction is
2 -1+ 829 + 32z2 + 5323 3 6424 (15-67)

20
Using x as a parameter, we easily express the other quantities of inter-

est. The eccentricity e is given by Eq. (15-49), while the drop in the peri-

apsis is obtained from

r -—-r
P
-—Jlji——— = B[rpo -a(l - e)] = Bao - Ba0e0!+ Bae - Bao(l + ez +...)
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or

P P
——Jlii——— = (x - xo) - (zl + €2, + 5223 + 8324) (15-568)

The ratio of the eccentricity is given by
= (15-69)

During the process of orbit contraction, the drag force is most significant
along the lower part of the trajectory, near the periapsis. This results in a
strong braking force at the periapsis which has the effect of reducing dras-
tically the apoapsis distance while the periapsis distance remains nearly con-—
stant. To show this effect we can calculate the ratios of the apsidal distances

as function of the variable x . We have

_afl - e) =z -gx -
= ao(l - eo) = o eo) (15-70)

o o

0

Similarly, for the ratio of the apoapsis distances, we have

Ta __afll + el I >
raO ao(l -} eo) (1 + ED)

If we want to calculate the drop in the apoapsis, we can use the formula

(15-71)

ra0 T Ea
m = B[ao(l +-e0) -—a(l+e)] = Sao - Ba + Xg ~ X
or
r -t
a a
° = (x, - x) - (z, + + ez, + €32,) (15-72)
T Xy = ¥ 2y * ez, + ez, z;) -
Finally, the orbital period is simply
3 3
T a 2 2
-T-—- = (a—) =z (x) (15-73)
0 0
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For each initial value € = H/ao ,» and initial eccentricity ey » We
can calculate the initial value Xy = Baoe0 = eola . Then, we can compute
the expressions a/ao R e/eo R T/T0 , ete., as functions of x . Sub-
sequently, they can be cross-plotted in any combination.

Since the quantities a , e , T are all easily observable, and the
integration has been performed to the order of. 34 , for small ececentricity
(which is the case for most scientific Earth satellites) the equations can be
used to verify the assump£ion made on the atmosphere. In general, it can be,
as a first approximation, assumed to be locally exponential. That is to say,
the parameter B , or H= 1/B , can be assumed constant for each layer of
the atmosphere. Since the value of B enters analytically in the sclutiom,
by adjusting for concordance between the theory and the obsérvation, determina—
tion of B can be made.

The theory can be modified to take into account the oblateness of the

planet and the atmdsphere, as has been done by King-Hele (Ref. 5).

15-5.3. Explicit Formulas For the Orbital Elements

For small eccentricity, e < 0.2 , the solutions obtained, Egs. (15-66) -
(15-73), are very accurate. They are in parametric form, and for each pair of
values e and Xq they can be used to cross plot the relationship between any
pair of orbital elements.

It would be useful to derive explicit formulas between amy pair of orbital
elements. This amounts to eliminating x between any two of the equations
(15-67) - (15-73). Because of the transcendental nature of the solutions, the
task is cumbersome. In this respect, King-Hele, (Ref. 5), used an asymptotic
expansion for the Bessel function In(x) . Since the asymptotic expans;on is

only valid for =x > 3 which approximately corresponds to e > 0.02, it was

necessary to divide the process of orbit contraction into two phases. In the
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first phase, 0.02 <e < 0.2 , asymptotic expansions can be used. Somewhat
heuristically, an accurate and explicit expressibn for the major axis was ob-
tained in terms of the eccentricity. In the second phase, e < 0.02 , by
neglecting higher order terms in e , the solutiom z(x) , identical to the
present theory, but only to the order of 62 , Was obtained, Eﬁplicit formulas
for the second phase are not available. Since the partition of the process of °
orbit conéraction into two phases is rather artifieial, we shall offer an ac-
curate theory uniformly valid for all values of the eccentricity in the range
0<e<0.2 . TFor very small values of e the theory is no lomnger wvalid, but
by then the satellite is only a few revolutions before effective entry into the
planetary atmosphere.

To derive the explicit expression for the major axis in terms of the eccen-

tricity, we write the equation (15-67) as

z = p + £4(2) (15-74)
where, by observing that

= fae = fage 0( )(—")

we can write

X = oz (15-75)
with
- - E___ * -
o = Xﬂk , k= o ) (15~76)
‘Then, explicitly
${z) = zl(uz) + ezz(az) + 8223(az) + ... (15-77)

Equation (15-74) is in the form to which a Lagrange expansicn can be successfully
applied. We have, (Ref. 8),

> e d -1 n
z=p+ I @) O] (15-78)
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If we carry out the expansion and then put p =1 , we shall have to the

4

order of ¢
= 2 3 4
z=1+ceh, (@) + £h,(a) + £’h,(a) + € 'h, (a) (15-79)
1 2 3 4
which is the explicit expression of z = a/a0 in terms of the eccentricity
e .

In the computational process, we have the following relations which can

be easily derived

&
dz

A _ o2 - A2 (15-
iz - X(X + 24 - A7) (15-80)
dB _ o

z-xh

Using these relations, we find that

h1 =3B - BO

h =2(A—A0)+ (A—S)(B-BO)

2 2 2

7 13
- xo) - (ZAO + —2—) (A - AO) + {13 + 2¢

h, = ={a

2
3= - 44 - A7) (B ~ By)

+%(3+a2+A-—A2)(B—BO)2

(15-81)
1,2 2 _
by, = - 5’ - ) (35 + Ay - 74)
+ A~ A)(213 + 424 + 16A% + 1207 - 9A + 4A A - 8A%)
6 0 0 0 0
- %(B - B (138 + 2502 - 46A — 7A% - 283y
- %(B - BO)Z (35 + Ta® - 6A% + oA - AD)
2 2
+2(A-'AO)CB-BO)(3+0£ + A - A7)
1 2. 2

- =(B - 30)3 (6 - a” + 2074 + 3A2 - 2A3)
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where

(15-82)
B = Log[all(a)]

Since ¢ = Ba.e , the solution, as given by the equations (15-79) and (15-81) -~

L]

0

(15-82), provides an explicit expression of the variation of the dimensionless
major axis a/ao in terms of the eccentricity.
The other orbital elements can also be expressed in terms of e . The

drop in the periapsis is seen to be

T -
20 = (o -x.) - (1L ~-e)h, + ch, + ezh + e3h ) (15-83)
E *0 17 3 4
For the apcapsis, we have
ra - ra
0 = (x, =—a) — (I + e)Y(h, + ch, + azh + eBh ) {(15-84)
H 0 1 2 3 4

By replacing x by oz in Eq. (15-70), we have the ratio of the periapsis

distances

2 Ei = Z“% z (15-85)
Py 0

where 2z 1s given by the Egs. (15-79) and (15-81).

For the ratio of the apoapsis distances, we have

a _ (1 + ea) N
TN 2 (15-86)
a 0
0
The orbital period is now
3
) (15-87)

0
which is a function of the eccentricity. As pointed out by King-Hele, this

equation provides a powerful method of verifying the assumption made on the
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atmosphere from two of the most accurate and easily measured orbital parameters,

namely the period of revolution and the eccentricity.

15-5.4. The Contraction of Orbits

The solution (15-66) can be considered as the exact analytical solution
" of the nonlinear differential equation (15-51). Both this solution and the
explicit solution in tefms of the eccentricity, Eq. (15-81), have been com-
puted for a number of orbits and they provide nearly identical results. As

illustrative examples, we consider the following initial orbits

25

Orbit 1: ¢ =0.008 , e, =0.2 =x

0 0

It

Orbit 2: € = 0.009 , e, = 0.225-+>x 25

0 0

il

Figure 15-3 plots the variation of the major axis versus the eccentricity
using the explicit solution, uniformly valid for all ecceuntricities. In this
figure and in the following figures the circles represent the exact solution.

Figure 15-4 plots the variation of the orbital period while Fig. 15-5
ﬁresents the drop in the periapsis. It is seen that the decrease in the peri-
apsis is very slow. This’can be seen clearly in Fig. 15-6 where the ratios

rp/rp and ré/ra are plotted versus the eccentricityl When e/eo = 0.1

0 0
the calculated values for ‘orbit 1 are ri)/rP = 0.987160 and ra/ra = 0.684968
0 0
and the corresponding values for orbit 2 are found to be rp/rP = 0.985136

0

and r fr = 0.651941
a “ag

15-6, LIFETIME OF THE SATELLITE
We now examine the préblem of the duration of the satellite in its orbit.
First we consider the Kepler' equation

;% t=E~—-e gin E



15-28

(o)
(=]
~ 0.85
© —— H/ay=0.008
eo=0.2 )
0.80— N o
—=——H/a,=0.009 : ~
ep=0.225 -
0.75—
0.70 I 1 ! | i ! ! l J
O 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.l
e/eq

Fig. 15=3. Variation of Semi-Major Axis With Eccentricity
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1.00
0.85
—— H/ag=0.008
6020.2
0.0 ~——H/a,=0.009
: eg= 0.225
o 0.85|-
|..
.
" 0.80F
0.75p
.
0.70— N
065kt 1L 0 1t 1 1]
1.0 0.9 0.8 0.7 0.6 05 0.4 0.3 02 0.l

e/e,

Fig. 15~4, Variation of Orbital Period With Eccentricity
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_
1.2 |—
|
i
1.0  —— H/ag=0.008 ;
ep=0.2 !
!
- ———=H/a,=0.009 /
eq=0.225 /
0.8 /
/)
i /4
/A
/
/
5 y
. /4
0.4 /
0.2
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0
1.0 09 0.8 0.7 0.6 05 04 03 0.2 0.1
e/eg

Fig. 15-5. Variation of Periapsis With Eccentricity
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rp /"Po

.00

0.95

0.90

0.85

0.80

"""“_'H/Go=o.008
0.75— eg=0.2
—~—=H/a,=0.009
070 e,=0.225
N\
RN
l l l l ! | | LY
0.65 .
! 09 08 07 06 05 04 03 02 0.l
' e/e,

Fig. 15-6. Comparison Between Periapsis Drop and Apoapsis Drop
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cr in its differential form

d a3]2
i - (1 - e cos E) (15-88)
Jlr -
The average equation is obviously
3
3/2 T 2
dt _a” __ 0@,y (15-89)

where TO is the initial orbital period. By dividing this equation by

Eq. (15-43), we have the average equation for the time

TOrp EXP(XO) exp[Ba. (z - 1)]
dt 0 0
g Y2rp v te@r +1)+ ] =0
mBayz, z 13 0 2 .
Using the solution (15-67) for =z = a/a0 we have for the exponential
exp{Ba,(z - 1)] = explz, + ez, + szz + o ]
PP, Pl 2 37
2
= exp(z,)[1 + ez <+-§—(zz + 2z.) + 1
Play 272 % 3T
xI. (x) 2
1 e”, 2
=_""__'_—_[1 + gz +—_(Z 4+ 2z ) + . . ]
xoll(xo) 2 2 2 3
Next, we define the dimensionless time T as
2
ZﬂBaopPOSfCD
T = - To xoll(xo) exp(- xo) t (15-91)
Then, the dimensionless time equation has the form
82 2
o ®x[1+ ez, + (=, +22) +. . .1 &
g_;_;_,=_ 22 V2 3 iy (15-9%)
/2 EX - eX
z [1+22(3y0+y2)+-—~—822(ll+y3). . . .;|

If =z dis replaced by its expression and then the binomial expansion is

applied, we have to the order of 92 » dnclusively,
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2
dr _ - &y - & 2 _ G2
i x[1 2(21 2z, + 3xy, + xyz) +3 (- 11x" - x ¥y + leyozl

+ 6xy221 + 18x2y§ + 2x2y§ + 12x YoIs — ley022 - 4xy222

2 2
+ 321 - 422 - 42122 + 422 + 82:3)] (15-93)

*

Finally, if the functions =z (x) as given by the solution (15-66) are sub-—
i
stituted into this equation, the time t is obtained by quadrature. FExplicitly,

by letting

T=t +er, +eir (15-94)

TO = - X
v = (2 -1 x+2x (B - By) (15-95)
'r; = -2+ %(7:% - 81% ~ 11A) = + 9x2y0
- 0+ 72)(8 - B x - 2 x 8 - BY? -
with ( )’ = d( )/dx . Integrating the first equation from Xy s e have
T = 30 - X7 (15-96)

For the other two equations some of the quadratures cannot be .expressed in
terms of. elementary functions. ‘Fo‘r an accurate treatment, we can tabulate
these integrals. But, to obtain an explicitzexpression for the time,.an approxi-
mation has to be used.
For elliptic orbits, when e > 0.02 (which corresponds approximately to

x >3 ), we have the following asymptotic expansion for the Bessel function

I (x)

1 () - SRX (3 ED%® -1he® -3h . .. e’ - e - )
2t m=0 m! (8x)"

Q5-97)
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In particular, we have for x > 3

IO(X)=E—XE-§[1+%§+ 92+...]
Y2nx 128%
(15-98)
Il(x)_ém[l__g;_._-@_f_. .
Yomx 128x
Using these expansions, we have to the order of 1/x
I, (x) '
- 0" 1.3
A~XIl(x)—x+2+8x+...
(15-99)
xI. (x) 3(x - x.)
1 1 x 0
B-B, =log ———=(x-%,) +>Log =—+ —5——F+. . .
0 onl(xo) 0 2 e 8xx0

With the expansicns substituted into the equation for T; , we have after

integration
.2 1 7.33,,2_ 2
T3 Te0o T W F 0% Ty - g ) g 7 XD
(15-100)
7, 3 3 7.2 X
_6(x0—x)+81{ Logxo
For the equation in Ty, » We take approximately
2 2
Xy, =X
AO = X
2 2
B - BO = (x - xo)
to have
oLl 2 1 _ 2_79 .3 _
T, = 8(4x0 - llxo) x + 4(35x0 4) x g X (15-101)

Integrating, we obtain

S
‘ru-

2y,.2 _ 2 1 3.3y ,79.4 _ 4
2 —-i—(4xo - 11X0)Cx0 -x7) - 15{35x0 - 4)(30 - x7) + 32(x0 X )

(15-102)
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The solution (15-94), with TiCx) as given by the Eqs. (15-96), (15-100) and
(15~102), gives the dimensionless time T as a function of x for large x
Although it is valid for x > 3 , we can have a good estimate of the time the

satellite remains in orbit by evaluating the lifetime T, obtained by

L
putting e =0 , or equivalently x =0 . Then, we have, the iifetime
given as:

ge 2
2t =l‘-82(1—-§-e +—%§~e2+la+————g+ Je
20 6 0

L 0 48 "0 " 8 6 lée
As with the orbital elements, it dis possible to express the time in terms

) (15-103)

of the eccentricity. For this purpose, we use the relation x = xozk to

write the expression for the time,

2
0

[t

2 112 7 33¢2

-9 2,2 Loy 11 L.
€T =5 (1 -2z"k)[1 + 2(3 £) ey + g ¢ T g€ 1690]
3
e
0 33 7% 4 4. 4
—-ii(l - z7k7) (14 + 35e0 - 4g) + 32 eo(l -z k) {(15-104)
+-%% ezeo(l - zk) +-% segzzkzLog (zk)

Since =z has been obtained explicitly in terms of k = e/eo through the

Egs. (15-79) and (15~8l), this expression gives the dimensionlesg time in terms
of the eccentricity. To be consistent with the approximation used in deriving
Eqg. (15-104), we shall use the expression for z in its asymptotic expansion

form. Then, to the order of ¢ ,

2]
Wl

1+ e[B(o) - B,

" - £ &
=1+ efa xo) + 5 Log %
or
z=1-¢eyl~k + % Log k (15-105)

By substituting into Eq: (15-104), we have, to the order of & ,
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2
e ce e
2 2 %o 22 0,11 2 7 0 °o
E:'r—&:Tsz—é-—zkIl+—§-—+—8e0+§e-—2—-—*6-—21{(14-}'3530-42)
79 2 2.2 7
+ TE € 2 kK - 5 € Log k] (15-106)
Dividing this equation by Eg. (15-103), we have
I-q- 2k2[1+§i‘1+§- 2,7 50070 hon s 350, - 4e)
oo 2 g% "8°""2 7% ® a1 .
+ 12 2 zzk.z-lsi,o k]/[l—-‘-s-e +—2-§-e2+z-€+ie—0-]
16 o A 8 6% 48 % " 8 6
{15-107)

where 2z d1s given by its simple expression (15-~105).

Figure 15-7 plots the ratio T/TL for the two orbits considered in the

previous section using the Egs. (15-105) and (15-107). The two curves plotted
in solid lines are nearly identical. It is found that they are very close to
the curve using the simple parabolic law suggested by King-Hele (Ref. 5).

T 2

= 1 -k (15-108)
L

In practice, the solution (15-107) is valid down to an eccentricity of
about e = 0.02 . When this eccentricity is reached soluticn by asymptotic
expansions 1s no longer valid. The equation (15-93) has to be integrated again
using a different approximation. This is also the case where the initial orbit
is nearly circular. Since e dis very small, the value of x is also small,

with x < 3 , and we only need to consider the solution for Ty and L

. The solution for T, is exact, as given by Eq. (15-96). For the equation in

0

T, , the second of the Egs. (15-95), we have the series expansion of the Bessel

1

function In(x) for small x

G%.X)n+2m

%&)=E n!ln+ m)!

m=0

(15-109)

In particular, we have
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Fig. 15-7. Variation of T/TL

with Eccentricity
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2 4 6
Ir“i-*%%*%az* -
. XZ x& xﬁ (15-11%)
Il=§(,1+§—+ﬁ'2—'+§§'i'6—+...)
Therefore
2 4
A=xyy=2+3-Fg+. .. (15-111) ,

This series is obtained by the binomial expansion and its convergence requires
that x > Ilcx) , that is, x < 2.4 . To extend its validity, King-Hele sug-

gested the empirical formula

A=xy =2+ (15-112)

mlx

which, although less accurate than the exact expansion, (15-111), for small x
never has an error more than 0.07 for larger values of x

We now write the equation for Ty

dt A
1_,0_,_21
= - ¢ 1-58

714 1.2
Z

= % B) (15-113)

* 2

ya _
o T E@ - A F o

Using the approximation (15-112) for A and AO , we have, upon inte-

grating the equation for Xy

L, 2 2 _ .2 I T N A P _
Ty = 20(4::0 5)(::0 x)+80(x0 x ) rE (:30 B)  (15-114)

Hence, for small eccentricity, the expression for the dimensionless time

is
2
2 2
2. _ %o x €. . 7.2 9 2 7z
ET—E_{(l-T){l‘!-'Z—(lTZO& —-20:{0)]-—29: 2(BO—B)}
%0 %0

(15-115)
This expression is identical to the ome given in Ref. 5, since that
analysis corresponds to the present theory up through the order of 52 .

Beyond this order, the integration in Ref. 5 involves some heuristic steps

which have been avoided in the present development. By putting x =0 in the

3
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equation above, we obtain the lifetime of the satellite from the initial ec—

centricity, &y assumed small.

- %(__9_ xﬁ - D] (15-116)

€ T, = 50

2
2, .20
L 2

By dividing Eq. (15-115) by Eq. (15-116), retaining only the order ¢

we have
2 2
LS Ei.+.z.e EE{E?Q_:_E_E - (B, - B)I] (15-117)
T 2 2 2 20 0
L x
0 %0
Now, if we write x = xok Ok exok(BO - B) , we can put the equa-
tion in the form
2
T 7 2 -
1.2 + 5 ek 55 (1—-k) ( - B)] (15-118)
TL 2 0

where the argument of B dis x =x kz = az . But, to the order & , the

0

solution
z=1- s(BO - B) (15-119)

is the same for both arguments x and o = xok . Hence, to the order of ¢

Eq. (15-118) gives the explicit expression for the ratio T/TL in terms of

k vwhere

B = Log o Il(a) s, o =x.k (15-120)

Considering the fact that both and B, are about 3 , the contribution

%o 0
of the & term in Eq. (15-118) is small and for small eccentricity, the para-
bolic law as given by Eq. (15-108) is still valid.

Equation (15-118) is of the form (15-74) where p =1 - E;— and the func-
tion to be found is kz . Hence, applying the Lagrange expansion to find- k2

and then taking the square root, we can express the eccentricity as a function

of the time:

3
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e _ X L 2Ty _ 38
—— = /1 oy 1+ 50 sxO(TL) 7 (BO - B)] (15-121)

where

=]
|

0~ Log xoll(xo)

T f T
Log[x, /1 - ey Il(xo/l - TL)] . (15-122) ‘

Numerical computation has been done for several orbits and it is found that

=
Il

the parabolic law is adequate. Hence Fig. 15-7 can be used for any elliptic

orbit up to ey ~“ 0,2,
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