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OPTIMUM THREE-DIMENSIONAL ATMOSPHERIC ENTRY

FROM THE ANALYTICAL SOLUTION OF CHAPMAN'S EXACT EQUATIONS

ABSTRACT

The general solution for the optimum three-dimensional aerodynamic

control of a lifting vehicle entering a planetary atmosphere is developed.

A set of dimensionless variables, modified Chapman variables, is intro-

duced. The resulting exact equations of motion, referred to as Chapman's

exact equations, have the advantage that they are completely free of the

physical characteristics of the vehicle. Furthermore, a completely gen-

eral lift-drag relationship is used in the derivation. Hence, the results

obtained apply to any type of vehicle of arbitrary weight, dimensions

and shape, having an arbitrary drag polar, and entering any planetary at-

mosphere.

The aerodynamic controls chosen are the lift coefficient and the

bank angle. General optimum control laws for these controls are developed.

Several earlier particular solutions are shown to be special cases

of this general result. This demonstrates a certain universality of this

solution. The results are general and apply to any given end conditions.

Of particular interest is the fact that the results are valid for both

free and constrained terminal position.
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1. INTRODUCTION

With the advancement of space flight technology and the in-

creased frequency of missions requiring atmospheric passage, basic

changes have been introduced in the new generation of aerospace vehi-

cles. The new generation of vehicles is distinguished by the ability

to use aerodynamic forces in a beneficial sense by controlling the

lift and, to a lesser extent, the drag. Such a controllable lifting

body can operate first as an integral part of the launch system,

using the maneuverability given by the controlled lift to help reach

the desired orbit. The vehicle can then function as a satellite for

an extended period outside the planetary atmosphere. Upon accomplish-

ing its mission, the vehicle can enter the atmosphere and again use

active aerodynamic controls to tailor its trajectory. The aerodynam-

ic maneuverability of the vehicle can be used to reach a prescribed

region before performing an approach and landing on an airfield much

as an ordinary aircraft. In addition, the lifting capability can be

used to limit the peak deceleration and heating, or to achieve a par-

ticular deceleration profile. The tailoring of the trajectory can

be quite detailed. Such abilities lead naturally to the question of

trajectory optimization.



Another area of similar interest comes from the requirements

of the vehicle's mission as a satellite. During the period of its

mission in extra-atmospheric space, the particular mission require-

ments may dictate that the vehicle perform one or more orbital

changes. An orbital change in space can only be effected at the ex-

pense of fuel consumption. The extent of missions which can be ac-

complished is severely constrained by the fuel requirements of such

orbital maneuvers. In some cases the aerodynamic maneuverability of

the vehicle can be used to advantage if, instead of a brute-force

pure thrusting maneuver in the vacuum of space, a combined thrusting

and aerodynamically active maneuver can be performed at lower fuel

cost. In such a case the prescribed final orbit is achieved, and the

savings in fuel consumption obviously can extend the useful life of

the vehicle. Hence, again, aerodynamic controllability leads directly

to the question of trajectory optimization.

A schematic of a combined thrusting and lifting maneuver for

the orbital change of an aerodynamically active vehicle is illustrated

in Figure 1. The state of the vehicle is represented by a point in

an n-dimensional Euclidean space E . The desired maneuver is to

bring the vehicle from an initial state S.. to a prescribed final

state S_ with minimum fuel consumption. For purpose of illustration,

assume that the optimal trajectory without aerodynamic maneuvering is

the trajectory C , a pure thrusting maneuver remaining outside the

atmosphere. Let the fuel consumption of this maneuver be J(C)

It is assumed that the planet, about which the maneuver is centered,



is surrounded by an atmosphere inside which a purely aerodynamic maneu-

ver can be achieved without fuel consumption. The only penalty of

the aerodynamic maneuver is a loss in the total energy. Of course,

the trajectory inside the atmosphere is subject to physical constraints

such as upper limits on deceleration and heating rate. The physical

description of the atmosphere about the planet, and the inequalities

describing the constraints on the vehicle and its trajectory, considered

as a whole, limit the region of the state space, E , which is open

to aerodynamic maneuvers to a subspace, E immersed in E , Fig-

ure 1.

If it is assumed that the analysis of the optimum combined

thrust and aerodynamic maneuver yields the optimal trajectory

C, + C. + C0 , where C. and C_ are thrusting maneuvers in space
X * / J. JL

and C^ is the subarc along which a purely aerodynamic maneuver is

used, then the global cost of this combined maneuver must be compared

with that of the purely thrusting maneuver, C . Let J(C ) and

J(C?) be the fuel costs of trajectory subarcs C.. and C» . The

fuel cost of C^ is zero, since it is purely aerodynamic. Thus, the

combined maneuver is optimum if the following condition is satisfied:

JCC^ + J(C2) < J(C) (1.1)

Intuitively, it is felt that, as indicated in the figure,

this condition is met if the states S and S. are, in some sense,

far apart, and if S.. and S~ are close enough to E .In fact,

several numerical studies have shown just that.



Figure 1. Schematic of Optimal Maneuver



In order to study the problem of optimizing the trajectory

for such maneuvers, it is necessary to develop a general theory of

optimal aerodynamically controlled maneuvers at orbital entry con-

ditions. To obtain qualitative understanding of the possibilities

of these combined trajectories, it is desirable to carry out the in-

vestigation analytically as far as is possible. Numerical computa-

tions are invaluable, but should be sought only after the analysis

has been carried to its greatest result. The-results of this in-~;

vestigation of optimal aerodynamic trajectories will serve as a valu-

able tool both for mission analysis and design, and for operational

studies.

It is the purpose of this paper to give a completely general

analysis of the optimal three dimensional aerodynamic maneuver of a

lifting aerospace vehicle entering and maneuvering within a planetary

atmosphere. The results obtained are independent of the physical

characteristics of the vehicle such as the weight, dimensions, and

shape. The results are applicable to any planetary atmosphere, and

are not dependent upon a particular atmosphere model.

A general synthesis of the optimal trajectory problem is pos-

sible if a suitable set of dimensionless variables can be constructed.

In this respect, a set of modified Chapman variables, (Refs. 1J, 2),

are used. In addition, the control variables through which the aero-

dynamic maneuver is directed are selected such that the results are

valid for a completely general lift-drag polar.



The analysis is made using the maximum principle, (Ref. 3),

with completely free variation of the controls on lift force and bank

angle, including the possibility of maximum bounds on these controls.

The maneuvers are purely aerodynamic. Thrust is not included at this

point.

The particular optimal trajectories which have been previously

obtained are presented again here. It is shown how these classical

solutions can be obtained directly from the general theory of this

report, thus displaying a certain universality for this theory.



2. EXACT EQUATIONS FOR ATMOSPHERIC ENTRY

USING VARIABLE AERODYNAMIC CONTROLS

The equations of motion of a nonthrusting, lifting vehicle

entering a planetary atmosphere are, Figure 2,

dr
— = V sin Y

d6 _. V cos Y cos ^
dt r cos <J>

d<{) _ V cos Y sin ty
dt " r

dV
IF - - ̂ - - 8 sin Y

(
COS G - (g ~ ."> COS Y

Vd* L . V2

" = - ~ S : L n ° " ~ C°S Y

The first three equations are simply the kinematic relations.

The last three equations are the momentum equations. The planet and

its atmosphere are assumed to be spherical and nonrotating. The

speed of rotation of the atmosphere is not insignificant. It can

reach, for the Earth, six percent of the circular orbit velocity in

the altitudes of consequence. However, it greatly simplifies the

analysis to ignore it, and account for it approximately by altering

the coefficients of lift and drag (Ref. 4).

The oblateness of the planet contributes an important effect

also. It has more impact, however, on long term effects such as decay
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of a satellite. In the altitudes where major aerodynamic forces are

encountered, the atmosphere maintains approximately the same oblate-

ness as the planet's surface. If the maneuver does not cover a large

range angle over the planet's surface, it is adequate to treat the

planet as spherical and use the local mean value of the planet's radi-

us "in the solution.

The six variables r , 6 , <j> , V , y > an(* ^ define the

state of the vehicle, considered as a point with constant mass m

The six equations of (2.1) are the state differential equations govern-

ing the changes in the state of the vehicle.

The initial plane is taken as the reference plane which shall

be referred to as the equatorial plane without loss of generality.

The velocity vector is defined by the state variables V , the speed,

Y , the flight path angle defined positive up from the local hori-

zontal plane, and the heading angle ijj defined positive to the left

(in the direction of the North pole) of the initial trajectory.

The bank angle, a , is taken such that for positive a the

vehicle is turning to the left. This bank angle is defined as the

angle between the local vertical plane containing the velocity (that

is, the r , V plane), and the plane containing the aerodynamic force

A and the velocity V , the A , V plane (or, what is the same, the

plane of the lift and the velocity, the L , V plane).

The. gravitational field is taken to be a central, inverse

square field, with the acceleration g(r) given by
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g(r) = *j (2.2)
r

but within the consequential atmosphere the acceleration of gravity

varies so little that analyses are usually still considered exact

when g(r) is replaced by a constant value. In order to be able to

continue the trajectories far beyond the sensible atmosphere, however,

the Newtonian gravitational field (2.2) will be kept available.

The atmospheric mass density, p , is a strong function of

the altitude. It shall be assumed to be locally exponential in that

it varies according to the differential law

= - 3 dr (2.3)
P

The local scale height, 1/3 , for any specified planetary atmosphere,

is a function of the radial distance also. For small altitude inter-

vals 3 can be taken as constant, though for the Earth, in the alti-

tudes of interest, from sea level to 150 kilometers, 1/g oscil-

lates from about 5 kilometers to about 8 kilometers. Rather than

assume 3 to be strictly constant in this report, the approach of

Chapman (Ref. 1) will be used. This is made possible by the choice

of variables, and will be discussed in detail later.

The aerodynamic force is controlled through the bank angle,

a , and the lift coefficient, C . It is assumed that there exists
Li

a lift-drag relationship characteristic of the vehicle and the par-

ticular flight conditions. Thus, the bank angle can be used to control

the direction of the lift, and either the lift coefficient, C , ^
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or the drag coefficient, C , can be used to control the magnitude

of the lift. To maintain the greatest possible generality, the lift-

drag relationship is not explicitly specified but is kept arbitrary

throughout the development.

As control for the lift magnitude, a rescaled lift coefficient,

X , defined as

X E CL/C* (2.4)

is chosen. Here C is the lift coefficient corresponding to the
J_i

maximum lift-to-drag ratio. Thus, maximum lift-to^drag ratio means

X equal to unity.

Similarly, the drag coefficient is replaced by

f(X) = CD/C* (2.5)

where, as above, C means the drag coefficient at maximum L/D

The function f(X) is the specifying function for the lift-drag rela-

tionship. Note that f(l) = 1 . Again it should be emphasized that, in

the general formulation of this report, f(X) need not be given ex-

plicitly.

In general, the lift coefficient has an upper bound. Also, it

is conceivable that the bank angle is bounded. Hence, the control var-

iables X and a are bounded by

Ixl < x1 ' max

la < a1 ' max

(2.6)
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For some solutions it is of interest to take _ and °~ very

large so as to determine the unbounded optimal controls. As long as

such a solution remains reasonable (that is, within achievable values

of the controls) , then the unbounded optimal control is also the

bounded optimal control. The behavior of a control on the boundary

and proper application of the maximum principle in such case will be

discussed later in this report.

Finally, the exact equations for atmospheric entry can use-

fully be written with r as the independent variable instead of t

The first of equations (2.1) is used to achieve the substitution.

The remaining five state differential equations (where r is no longer

a state variable) are

d6 _ cos ty
dr r cos <|> tan y

d<̂  _ sin i|)
dr r tan y

, . f pSC_ -sin -a . . ,dip _ ' ._ L __ cos ip tan 4> ,_
dr 2m sin y cos y r tan y

d V - D g

dr 2m sin y V

, pSCT cos a ndx = L __ /£_ _ I\ cos y
dr 2m sin y v 2 r sin y

2.1 The Modified Chapman Variables

At this point it becomes convenient to introduce two new vari-

ables in the same spirit as did Chapman (Ref. 1). The variables used

here differ in several respects from those of Chapman. Hence, these



13

new variables shall be referred to as the modified Chapman variables.

pSC
Z E

2m g
(2.8)

T,2 2_ V cos

The minor differences from the original Chapman variables are

as follows. Chapman's Z is proportional to C . In his case this

was feasible since his analysis was for constant lift and drag coef-

*
ficients. In the present report C has been replaced by C ,

which is constant for a given vehicle under given flight conditions.

The results will not change no matter what constant is used. Hence,

even a vehicle and flight conditions such that the actual maximum L/D

*
changes drastically (and, therefore, so does C ) can be considered

LI
*.

if a convenient- constanttissrdefinediascVC, ,_in these equations.
J-1U -'

Also, in Chapman's report, Z is proportional to vu of

this report. However, it is found that the resulting exact equations

have a simpler form as defined here. This is the reason, too, for

taking as the second variable u of equation (2.8) in this report,

rather than the Chapman variable u , which is simply /u

It is impressive, and of great benefit to following researchers,

that Chapman, after many trials, discovered his transformation which

now permits the general optimal solution of this report.

Chapman derived his two equations , excluding the range from

consideration, for planar motion with constant lift-to-drag ratio.
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Here, the full set of five equations for the three-dimensional maneu-

ver is considered, including the range, and with completely variable

lift coefficient (and related drag coefficient) and bank angle.

Chapman used two simplifying assumptions that limited his solu-

tions. The first is that the fractional change in distance from the

planet center is small compared to the fractional change in velocity,

• |dr/rj._<<.-. |dV/v|'._The --secondsis,-for Llifting vehicleŝ the flight path

angle y relative to the local horizontal plane is sufficiently small

that the component of lift in the horizontal direction is small com-

pared to the component of drag, | (L/D) tan y) I <5 %-'. •

Because of these assumptions, his resulting equations are ap-

proximate. Here, these assumptions are not used. The resulting equa-

tions are exact. Even g and r are kept as varying, though for

many trajectories they may be taken as constant without loss of accuracy.

2.2 Chapman's Exact Equations

Because of their origin, in recognition of Chapman's contribu-

tions , the exact equations for three-dimensional atmospheric entry

with variable lift coefficient and bank angle obtained in this report

will be referred to as Chapman's exact equations.

By taking the derivative of u , as defined in equations (2.8),

with respect to r ,

2 2 2 2 2du _ cos Y dV 2V sin y cos y dy ._ V cos y
dr ~ gr dr gr dr v 2

(2.9)
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is obtained. Using equations (2.7) and the definitions (2.4), (2.5),

and (2.8), one obtains

+ x cos 0 tan Y + __ (

dr sin Y r E* 2/eT Z

* * *
where E is the maximum lift-to-drag ratio, and is equal to C /C .

Li D

In this notation the differential equations for the flight path

angle, y, and the heading angle, ij>, are

[A cos a -f (1 _ )] (2.11)
dr sin Y r u

and

sin a - Y COS * tan *] (2.12)—dr sin Y cos y r /r—

where the effect of the controls, \ and CT, is obvious.

From gquation (2.8) for Z comes

0.13,

in which the coefficient "a

- ~ PB dr 2Br 2g2 dr

becomes, for the locally exponential atmosphere of equation (2.3)

If the atmosphere is taken to be >strictly exponential, then

3 is constant and d3/dr is zero. Thus,

If, on the other hand, an isothermal atmosphere is assumed, then

2
gr is constant and d£/dr is - 28/r. Then

,„ n c .
3 - - ̂ dT - 23r" (2'15C)



16

Finally, if gr is assumed constant, dg/dr is - g/r and

a = -4 ^--T- (pg dr gr

In any of these cases, if "a" is set equal to unity, the required

density relationship will differ very little from equation (2.3).

^- = - gdr + small term (2.16)
P

It shall now be determined which assumption is most convenient.

If the equations of motion are rewritten using the state vector

->•
X defined as

X = (x1, x2, x3, x4, x5) = (0 , 4> , ijj , u , y) (2.17)

with the variable Z as the independent variable, the resulting

differential equation for the state vector will be of the form

->-

|| = F(X , X , a , gr , Z) (2.18)

in which now g and r appear only as the product gr.

For Earth, and as well as is known for the other planets with

atmospheres, the quantity gr oscillates about a mean value throughout

the altitude band of primary concern for atmospheric entry. Chapman

(Ref. 1) pointed out this and made the assumption that gr was constant

and equal to its mean value in this lower region of the atmosphere. For

Earth, for altitudes below 120 kilometers, the mean value of gr is

about 900. The deviation of gr from its mean value is large. In this

same region gr varies from a low of about 750 to a high of about 1300.

It is, however, a better assumption than simply putting g constant

and using the simple exponential atmosphere at this point. This

development will follow Chapman's lead and put gr constant.
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In any case, the coefficient "a" defined in equation (2.14)

must be very nearly one. It will be henceforth put equal to unity.

Explicitly, the equations (2.18) are

d6 cos ip
dZ 3r Z cos <f> tan Y

d£ = _ _
dZ - - Br Z tan Y (2>19)

2
dil> 1 r, . cos Y cos \1> tan A,_i. = — [X sin a - 1——— L]

vf3r sin Y cos Y V/P^ Z

du 2u rf(X) , . t ., , sin Y-._ [ v y + X cos a tan V + L]
dZ ^ sin Y E

dY_ _ _ (X cos o + G)
dZ /3r~ sin Y

in which the new variable

G = cosjc. (1 _ cosijC) (2<2Q)

/6r"Z"

has been introducted for convenience. The physical significance of G

will be discussed later.

The equations (2.19) are the equations for three-dimensional

flight inside a planetary atmosphere with a variable lift coefficient

and variable bank angle. They are referred to as Chapman's exact equa-

tions.

It should be noticed that, rather than Z as the independent

variable, any one of the state variables, for example, the flight path

angle, Y > can be chosen as the independent variable. Sometimes it

will prove advantageous to change from one independent variable to

another to obtain monotone behavior. The quantity 3r is to be treated
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as a constant, thus eliminating the problem of r appearing on the

right-hand side of the equations.

The equations (2.19) can be considered as the exact equations

for planetary entry since the two restrictive assumptions of Chapman

have been removed. The only restriction in these equations is that

concerning gr . This assumption has proven to be valuable and not

damaging to the results. This assumption concerns only the given plan-

etary atmosphere. The equations properly reduce to the equations for

Keplerian motion in the vacuum of space.. Thus, in this'further sense

they _are*exact.

These equations are completely free of the physical character-

istics of the vehicle. The results obtained apply to any type of ve-

hicle, regardless of weight, dimensions, and shape. The equations ap-

ply to any atmosphere, specified by its mean value of fBr at this

point, and later by the specification of its density-altitude relation.

There are no restrictions on flight path angle, lift-to-drag ratio,

or type of trajectory.
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3. APPLICATION OF THE MAXIMUM PRINCIPLE

The problem is now formulated as an optimal control problem.

The state of the vehicle is defined by the five-vector, X , as

given by equation (2.17). The motion of the vehicle is governed by

the state equations (2.19). The normal problem would be posed by

prescribing an initial state, X. , and partially prescribing a ter-

minal state, X . The problem is to select the control functions,

X(Z) and a(Z) , subject to the constraints (2.6), such that some

function, J(X,. , Z,.) , is minimized. Such a solution is an optimal

trajectory, and is determined by the control functions, X(Z) and

a(Z) , which are the optimal controls.

Using the maximum principle (Ref. 3), a five-vector, p ,

associated with the state vectbr, X , to form the Hamiltonian, H ,

one obtains
H E p; • X (3.1)

which, in this case, is

P1 cos ̂  p9 sin fy p
H = ~ 3r Z cos 4> tan y ~ gr Z tan y " ,— . [X sin a -

' /gr sin y cos y

2 , ̂  2p.u -,,.cos y cos fr tan 4^ . r4 T£W . , . sin1 r an _L r_^_/^ ̂  T cos a tan .. _i

Z /6r sin y E 2/gr" Z

p,.(X cos a + G)
(3.2)

sin y
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dZ

and

The canonical equations of Hamilton

dx
1 _• .on j _ c /o o\(3.3)

dp, aH
(3-4>

govern the propagation of the state variables, x. , and the adjoint

variables, p. . Equations (3.3) are nothing more than equations (2.19).

The adjoint equations, (3.4), provide the additional equations required

for solving the optimal control problem.

A necessary condition for optimality is that, at every point,

the Hamiltonian, (3.2), considered as a function of the control variables

X and a , be an absolute maximum (Ref. 3). This may be illustrated

in the cylindrical space of (X , a;, H) , Figure 3. The control var-

iables X and a may be either an interior point or- a boundary point

of the set of controls , X and a . This leads to the following pos-

sible types of optimal solution.

a) X = X(Z) , variable a = a(Z) , variable

b) X = X(Z) , variable a = a , constant
max (3.5)

c) X = X , constant a = a(Z) , variable

d) X = X , constant a = a , constant
max max

The optimal trajectory may consist of any one or a combination of

these optimal subarcs, depending on the given end conditions.

For types a) and b) of (3.5), the lift coefficient varies along

the trajectory. The maximization of H with respect to X requires

that
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figure 3. Maximization of the Hamiltonian
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(3.6)

or, for the Hamiltonian of (3.2), that

df * E* p/? sin a
- + E cos a tan * = —-(—_— + ̂  cos a) (3.7)

4

which, when solved, yieldsjthe optimal control law, X(Z)

For types a) and c) of (3.5), the bank angle varies along the

trajectory. As above, maximization of the Hamiltonian with respect

to a requires that

ff=0 (3.8)

or, for the Hamiltonian of this problem, that

* E* P3 COS 0
E sin a tan y = - o - ( -- Pc

 sin a) (3.9)1 2p,u cos y 5

which, when solved, yields the optimal control law, o(Z)

More concisely, along an arc of type a) , with both X and a

varying to maximize the Hamiltonian, the following equations hold.

df * E*P5
^ cos o- + E tan y = o — - (3.10),dX 2p,u

*

4f sin cr = 0 *'
 3 - (3.11)

dX 2p,u cos Y

Obviously, except for type d) , the optimal controls are func-

tions of the adjoint variables p_ , p, , and p_ , components of the

adjoint vector p . Since the equations (3.4) for the p. are

coupled with the state equations, (3.3) or (2.19) ,thV complete' solution

requires the simultaneous integration of these two sets of five
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differential equations.

Analytically, these tasks would appear to be impossible without

some simplifying assumptions. Fortunately, the present formulation

not only provides a completely dimensionless set of equations which

can be used for a purely numerical analysis for a general type of

aerospace vehicle with completely arbitrary drag polar, but also eases

the way to obtaining approximate .optimal control laws independent of

the physical characteristics of the vehicle.

As an indication of the universality of this presentation, it

is possible to show the different known approximate solutions and how

they may be derived from this theory. After this, the general solu-

tion from this theory will be presented.
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4. SOME OPTIMAL SOLUTIONS BY APPROXIMATE MEANS

The two sets of equations, (3.3) and (3.4), for the state var-

iables and adjoint variables can be integrated if certain special

cases are considered and realistic assumptions are made. In the past,

these particular solutions were obtained by different authors through

various ad hoc coordinate transformations and simplifying devices.

It will now be shown how these special solutions of other authors

can be obtained directly from the theory developed here. In this way,

a certain universality of the theory is established.

It should be pointed out that, al'though the optimal control

laws obtained are approximations, the exact differential equations

for the state variables have been presented, equations (2.19). Thus,

once the control laws are known, these exact equations can be inte-

grated, using the approximate optimal control, to yield the precise

trajectory flown by the vehicle.

4.1 Contensou's Formulation

Contensou considered the problem of a skip trajectory in the

vertical plane with the range unconstrained (Ref. 5). The range, 0 ,

does not appear in the Hamiltonian, (3.2). Thus, from (3.4) the ad-

joint variable conjugate to 0 is constant. Since the range is uncon-

strained, the transversality condition (Ref. 3) gives p.. as zero.

The range, 0 , is therefore an ignorable coordinate in every sense of
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Jigure 4. S^ip Trajectory
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the word (Ref. 6). The assumption of flight in a vertical plane elim-

inates <j> and i/> as state variables. The remaining state equations

are the last two of (2.19) for u and Y > in which the bank angle

a is set identically equal to zero.

The governing force is primarily the aerodynamic force. The

Allen and Eggers assumption is justified (Ref. 7v). This allows the

last term in the equation for u to be dropped. This is the term aris-

ing from the gravity component along the tangent to the flight path.

Similarly, in the equation for Y » the G term, expressing the com-

bined gravitation and centrifugal force normal to the flight path, is

neglected. The equations now have the following form.

du 2u rf(X) . , .. -.
— = — HIT + * tan Y]
a^ /g7 sin Y E (4 L)

dv X
dZ /g7 sin Y

Since the right-hand sides of equations (4.1) are free of the

independent variable Z , the Hamiltonian, (3.2), is a constant of

the motion, giving

2p,u m P.-X a
H = - [î - + X tan Y] ~ (4.2)

/gr" sin Y E /gr sin Y /3r̂

where a- is a constant of integration.

The equation for the adjoint variable, p. , is, from (3.4),,

tan
sin Y; E

which, combined with the first of equations (4.1) gives

d(p4u) = 0 . (4.4)
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P4
U - a4 <4-5>

with a, another constant of integration.

It should be noted that the terms neglected do not change the

general optimal control law for the lift coefficient, equation (3.7).

Therefore, using the integrals (4.2) and (4.5) in equation (3.7) gives

the optimal control law for the lift coefficient in the form

f(A) - A-|| = Y- sin Y (4.6)

where
*

- E*5 (4 7)
5 a4

is the only constant appearing as a parameter in the optimal control

law. The optimal control is either A or A variable, given by
fflcLX -- _._; •

equation (4.6).

The control is valid for any drag polar. For the special case

of a parabolic polar

f(A) = |(1 + A2) (4.8)

which yields Contensou's law (Ref. 5),

A2 = 1 - a5 sin Y • (4.9)

This solution applies to the problem of maximizing the final

speed, Vf %• "with a prescribed final altitude, Z , or to the prob-

lem of maximizing the final altitude with a prescribed final speed.
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A detailed discussion of these two problems, and, in particular, the

evaluation of the constant a_ and the switching between X arcs
5 . max

and variable X arcs is available (Refs. 8, 9 ).

The control law of Contensou, equation (4.9), provides a close

approximation to the exact optimal lift control. It can be improved

by considering the exact equation for the state variable u . That is,

the first of equations (4.1) is replaced by

du 2u rf(^) . i «. . sin YI /•/ -,n\__ = - [ — -L. + ̂  tan y + — '] . (4 . 10)
/3r" sin y E 2/gr Z

2p.U i- / 1 \ . P r ̂„ K4 rfU) . i fc , sin Yn 5 _H = -- 1 — — I- X tan Y + f
/Br" sin Y E 2̂ r.Z: /Pr sin Y

(4.11)

is the new Hamiltonian.

The equation for the adjoint variable p, is now

I* . . -̂ -tilA! + x tan v + _^, (
/gr sin Y E 2/gr Z

from which it follows that integral (4.5) still holds.

In this case the Hamiltonian is no longer constant (Ref. 3).

_ 9H _ P4U

With p,u from equation (4.5), this can be integrated.

a. ac4 . 5
r /gr"

Substitution of the integrals (4.5) and (4.14) into the general

optimal control law, (3.7), yields exactly the same optimal lift control
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as before, equation (4.6). This demonstrates the accuracy of Contensou's

law. The improvement comes in the behavior of the state variable u ,

now obtained from the exact equation (4.10).

A second, and more important, improvement can be made by con-

sidering also the exact equation for the flight path angle, y • This

i

will provide a correction to the control law, (4.6).

The state equations for u and y are now

^ = 2u rf(X) + X tan v +
dz , — I * + A tan Y +

/3r Z E

(X + G)

sin ̂ 1J
Z

(4.15)

/0r~ sin

The Hamiltonian is

2p4U f(X) sin Y P5(X + G)
H -- = - [î- + X tan Y + Y - — - (4.16)" " "

sin Y E 2>/J3r" Z /gr" sin

The additional term from G , defined by equation (2.20), con-

tains,' u , Y > and -Z • It will be impossible to handle without

some simplifying assumption. For the skip trajectory, the assumption

used, (Ref. .7 ) , neglected G compared with X . For a glide trajec-

tory, the correct assumption, (Ref. 10), is that (X + G) is approxi-

mately zero. For many trajectories, G remains nearly constant, as

was noted by Loh (Ref. 11). This assumption of constant G has been

referred to as Loh's conjecture. An effective use of this approach is

to assume G constant for the sole purpose of obtaining the optimal

lift control law. Once the control law has been obtained, the state

equations, (4.15), can be used with a varying G , equation (2.20),
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to generate the exact trajectory of the Vehicle. This method of

handling G has been used by several authors (Refs. 12, 13).

The equation for p. , equation (4.12), still holds, as do

the two integrals, (4.5) and (4.14), if G is treated as constant as

described in the preceding paragraph. Substitution of these integrals

into the general optimal control law, (3.7), gives the optimal con-

trol law in the following form.

f(X) - (X + G)̂|- = -^- sin y + E*G tan y (4.17)dX 2.

For a parabolic drag polar, (4.8), the optimal control law is

(X + G)2 = 1 - a5 sin Y + G
2 - 2E*G tan y (4.18)

The inclusion of the G term provides a higher order effect

for, or correction to, the optimal control law of Contensou, (4.9).

*
In particular, the last term, involving E , shows the influence of

the maximum lift-to-drag ratio, which is a design parameter, on the

optimal lift control. This term is important in another sense because

it provides a correct limiting form for the optimal control law at

low speeds. Without this term, for a maximum range problem the lift

coefficient would tend to zero at the terminal point. With this term,

the lift coefficient will correctly tend to the maximum lift-to-drag

ratio condition at the terminal point.
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4.2 Fave *s Formulat ion

Fave studied the optimal bank control to obtain the maximum

footprint for an orbital glider entering the atmosphere, (Refs. lU, 15).

He analyzed a three-dimensional problem using a reduced set of equa-

tions. Fave followed the approach and used the assumptions of Ref. 16,

but allowed a variable lift coefficient and a variable bank angle.

The basic simplifying assumptions are that the lateral range is

small, and that the conditions of equilibrium glide hold, the assump-

tion first put forward in Ref. 10.

With the lateral range small, <j> is approximately zero. The

equilibrium glide trajectory assumes that the lift, gravitational

force, and centrifugal force are balanced in the vertical direction.

Thus, the equilibrium term is zero.

A cos a + G = 0 (4.19)

The glide angle is small, and small angle approximations are applied

to y . Thus, sin y - tan y when in the denominator, and cos y - 1

Using this and the definition of G , (2.20), equation (4.19) is

1 . =uA cos a (4>2Q)

which serves as a constraining relation.

All these assumptions applied to the state equations, (2.19),

yields
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5.
of an
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d6 _ - cos \j>
dZ gr Z tan y

d<j) sin \j>
dZ 3r Z tan Y:

(4.21) .
dij) X sin a :
dZ ~ " ygr" sin Y

du = 2uf(X)
dZ E* /07 sin Y

With equation (4.20) giving Z in terms of u , the state

equations (4.21) can be written with u as the independent variable.

*
d9 ' E X cos a cos if
du f(X) 2(1 - u)

c'-i \ *
dj) _ E X cos a sin if)
du ~ ~ f (A) 2(1 - u)

* ,dif) _ _ E ,X; sin a
du f(X) 2u

Note that

f.(X)
(4.23)

the lift-to-drag ratio. In this case E can be used as one of the

control variables.

The Hamiltonian, with E a control variable, is

P- cos a cos tj; p cos a sin i|> p, sin a

H - - f [-i-ĵ r; - + ̂ -T̂  - + J4—1 (4'24>

Since the independent variable u is decreasing, so that du

will be taken negative, the optimal control is that which minimizes

the Hamiltonian. H is minimized with respect to E when E is equal
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*
to E . The flight is always at maximum lift-to-drag ratio. The

optimal bank angle a will either be at its maximum value, or will

vary as a solution of equation (3.8). Explicitly, this is

(1 - u) p3
tan a = U(PI cos if, + p2 sin 40

 (4'25)

The differential equations for the adjoint variables are

du

dp
2 = 0du

dp, *
E cos a ,_ __._ ... _ cog ^ (4.26)

du 2(1 - u) VF1 "" ^ ^2

The integration is immediate.

Pl = al

P2 = a2 (4.27)

In this, a1 , a« , and a_ are constants of integration.

The optimal bank angle varies according to equation (4.25), which

is now

(1 - u)(a <j> - a 6 + a )
tan a = —f - f-r - *—. - rf- (4.28)u(a1 cos i() + a- sin ij>)

*
This , along with E equal to E , is the optimal control law for the

problem of maximum footprint of a hypervelocity vehicle on gliding

entry to the atmosphere, using Fave's formulation.
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It should be noted that in this solution the flight path angle

is assumed to be negligibly small, and the optimal lift control is

X equal to unity. This same solution comes from Contensou's formula-

tion, as can be seen from equation (4.9) with y taken as zero. It

is shown in Section 4.4 that, in fact, Contensou's law, equation (4.9),

is also applicable to general three-dimensional flight. It will also

be shown, in Section 5, that the equations for the adjoint variables

P1 , p« , and p~ can be integrated in the general three-dimensional

case with no restrictive assumptions.

4.3 Busemann's Formulation

The exact equations for horizontal coasting flight of a hyper-

velocity vehicle, following a great circle (course,"wererintegrated in>

Ref. 17. The problem is that of the flight of a vehicle along a great

circle, starting from an initial speed u. (Figure'6). As the speed

decreases due to atmospheric drag, a constant altitude is maintained by

continuously increasing the lift coefficient until the maximum lift co-

efficient is obtained. In Ref. 17 it is shown that the resulting range

can be maximized by a proper selection of the optimal constant altitude.

This approach and problem formulation can be extended to lateral

flight at constant altitude. The optimal lift and bank controls can

be found such that the maximum reachable domain, at any given altitude,

is obtained. Then the constant altitude can be used as a parameter to

find the optimum flight level for maximum longitudinal range, maximum
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'Figure 6. Reachable Domain in Constant Altitude Coast
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lateral range, or maximum area of the reachable domain.

Unlike Fave's formulation, the exact solution to this problem

can be obtained since the adjoint equations for p- , p_ , and p~ ,

which are the only adjoint variables involved in this problem, can be

integrated exactly.

First, for horizontal flight the flight path angle, y > is

identically zero. Thus, the last of the state variable equations,

(2.19), is zero and becomes a simple constraining relation.

X cos a = -1 " u (4.29)
wu

w E /gr" Z (4.30)

Since the altitude is constant, w is a parameter which serves to de-

fine the flight altitude.

With Z no longer a variable, the first three state variable

equations, (2.19), can be rewritten using u as the independent var-

iable, and setting y equal to zero.

*
d0 E cos fl
du 2f(X) wu cos <j>

d̂  E sin i|) (

du 2f(X) wu

*
dip E ,., . cos jptan <J>,
j = - or/-A — U sin a -- * - -]du 2f(X) u w

As\;shownhby>; the constraining relation for horizdntar flight,

(4.29), the lift and the bank are no longer independent controls. One

immediately noticed effect is that, for u > 1 , negative lift is
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required to maintain horizontal flight. The consequences of this are

interesting and are discussed in detail in Ref. 17. Here, the discus-

sion will be limited to the case where u < 1 . That is, the horizon-

tal velocity is taken to be less than the local circular orbital veloc-

ity. The independent control is chosen to be X , subject to the in-

equality, (2.6), and, with u less than unity, X is never negative.

The flight at constant altitude is terminated by the constrain-

ing relation (4.29) when X reaches X with the bank angle, 0 ,
tUclX

equal to zero. Hence, for aj:prescribed flight altitude w , the final

speed is

vf ̂ ::.̂ --"f = 1 + wA <4'32>
- • • - .ax ' max

The state variable equation for ty , the last of equations

(4.31), is rewritten by expressing X sin a in terms of X , u ,

and w by using equation (4.29).

I* r+ /X
2wV - (1 - u)2 . , .,

— u cos uJ tan <plT. - o.c/-v\du 2f(X) wu u

(4.33)

The Hamiltonian for this problem,

*
H = - [p + p sin * +

7,222 n 2
,+ vX w u - (1 - u) . . ,N1+ p ( -- ^ - - -- cos 4) tan <(>)]

which must be maximized with respect to X . This occurs for either

X equal to X , or for a variable X given by the solution of
^ max

s

9H/3X = 0 . The latter condition is, explicitly,
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_^3 2 2 .Xf ,2, , .. .,2,
— -[w u -(TT - X ) + (1 - u ) ]

'""" " ' • / * ) • ' O i O . . " ' ' — T~I ' 'o

u / X - w u - (1 - u) (4>35)

cos . . i ^ .
= Pl cos (fr P2 Sin * ~ P3 COS * tan *

where f is df/dX

This equation can be solved for X in terms of the state vari-

ables, 6 , $ , 1(1 , if the adjoint components, p1 , p_ , and p_ ,

are obtained in terms of the state variables. The adjoint equations

are

dpl
T^- = °du

dp *2 E , cos ̂  tan d) cos
~ [ p - / - - Pdu~ = 2f(X) wupl - / s - . » - P3cos <p

* sinJ li r OJ-ll U/ .

du~ = - 2f(X) wu[pl ̂ 55* - P2 COS * - P3

Immediately,

P-,̂  = a-!̂  (4.37)

To solve the other two adjoint equations, first change the in-

dependent variable from u to 6

dPo PT
tan

d6 **! Y cos <)> (-

dp3
-jg- = p-ĵ  tan i); - p2 cos $ - p3 sin <j> tan ip

Differentiating the first of equations (4.38) with respect to

0 , gives
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i2p, -PI • * ™2^ _ r J. L sin IJK dq)
V d9,do cos <p

Using the second of equations (4.38) and, from equations (4.31), the

relation

= cos <j) tan ty (4.40)do

puts equation (4.39) into the simple .form

"V
— + P = 0 (4.41)

The general solution is

P2 = a_ cos 6 + a« sin 6 (4.42)

where a_ and a_ are the last two constants of integration. The

adjoint variable p is now obtained from the first of equations (4.38).

P3 = a, sin ifi - (a- sin 0 - a« cos 9) cos <j> (4.43)

The expressions for the adjoint variables, p. , equations

(4.37), (4.42), and (4.43), are substituted into equation (4.35). This

yields, upon specifying the lift-drag relationship f(X), the optimal

variable lift coefficient, \ , and, through equation (4.29), the op-

timal variable bank angle, a

One particular case of interest, that of the parabolic drag polar,

deserves to be written out specifically. The function f(X) is given

by (4.8), and the optimal control law is
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+ P3[w
2u2(l - X2) + 2(1 - u)2]

. /.2 2 2 ~ .2
2uA w u - (1 - u)

+ P2
 sin * - P3

 cos ^ tan <f>

2
This equation is a quadratic in X , and can be solved ex-

2
plicitly for X as a function of the state variables, the three con-

stants of integration, a. , and the independent variable u , when

the solutions for the adj oint variables, p. , are inserted.

Thus, the generalized Busemann problem is completely solved.

As far as can be determined, this problem is the only one of this cate-

gory for which the set of exact adjoint equations is completely inte-

grable. Thus, it is the only such problem for which the exact optimal

aerodynamic controls are obtained explicitly.

4.4 The Three-Dimensional Free Range Problem

For this problem, the assumption of small lateral range is

used, <f> - 0 . The motion is described by the state variable equa

tions, with Z as independent variable.

d6 _ cos \l>
dZ 3r Z tan y

d<j> _ sin
dZ 3r Z tan y

d =- - _ _ -

/Br~ sin y cos y

du 2u rf(X) , , , , sin y,-=- = — - [~ '- + X cos a tan y + ']
sin y E 2/gr Z
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dy (X cos a + G) ,. . e ,N-ĵ r = — - - - (4.45, continued)
dZ sin

The general optimal control laws for the lift coefficient and

bank angle, equations (3.7) and (3.9), are still valid.

The Hamiltonian is now

P1 cos \l> p_ sin ij> p, X sin a
H = ~

gr Z tan f ~ 3r Z tan y ~ -for sln Y cos vvpr sin y cos y (4.46)

2p4u rf(X) . . . sin Y, (A cos a + G)
— • — - [ ̂ + X cos a tan y + - ] - PC -
/gr sin y E 2-/$r Z /gr" sin y

The equations for the first three adjoint variables, p.. , P2 ,

and p™ , are

dpl
dz1-0

dp
dZ

2 = 0 (4.47)

dZ gr Z tan y v.»A Br Z tan y

Integration gives the adjoint variables as

pl = al

P2 =: a2 (4.48)

P3 = al* ~ a28 + a3

with a. , a_ , and a» constants of integration.

If the term G is treated as a constant in the differentiation,

as explained in detail in Section 4.1, the equation for p, is
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4 4 rf(X) i •» ^ . sin YT // //,\-nr- = -- [ a + X cos a tan y + — '] (4.49)
/er~ sin y E 2/Br Z

which is precisely equation (4.12). Thus, again

P4u = a4 (4.50)

is the integral for p, . For the final integration, instead of in-

tegrating the adjoint differential equation for p_ , the variation

of H along an optimal trajectory is considered. The maximum principle

requires that

dH 9H ,.
dZ =3Z (

which, in this case, is

+p
^

_

A7 2 2 2 ?
gr 2 tan Y 3r Z tan Y 5r Z

If the longitudinal and lateral ranges are not constrained, the traris-

versality condition (Ref. 3) gives a., and a2 as zero. Then, with

p,u from (4.50), H is the same as in equation (4.14),

a, a,.

in which a,- is the last constant of integration. In this case p. ,

from the last of equations (4.48), is just a, , the integral (4.53)

can be written as
*

E P5 *
- -̂(X cos a + G) = 2f (X) + 2E X cos a tan V

4 , . (4.54)ct-X sin o
--- ac sin Ycos Y 5
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where

*

â'i!a
3 a4

and ^ (4.55)
E a

are the two constants of integration required in this problem.

Substitution into the general optimal control laws, equations

(3.7) and (3.9), gives

i) the equation for the optimal control law for varying lift co-

efficient :

df 2G> df a3G tan CT *
2[X-rT- - f (X)] + :— -rr = — r ac sin Y - 2E G tan YdX cos a dX cos y 5

(4.56)

ii) the equation for the optimal control law for varying bank angle:

a,(X + G cos a) A

2f(X) = -~ + a. sin Y + 2E G tan Y (4.57)sin a cos Y 5

Hence, referring to the four possible types of optimal trajec-

tories, equations (3.5), for type a) both equations (4.56) and (4.57)

hold. For type b), equation (4.56) gives X(Z) while \a\ = a

For type c) , equation (4.57) gives a(Z) while |x| = X . For
TTlciX

type d) , both X and 0 are held constant at the limit of permissable

values .

Solution gives , for type a) ,

§f sin a = -r-̂  - (4.58)
dX 2 cos Y
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and

2(X + G cos a) ~ - 2f (X) = - ac sin y - 2E*G tan y (4.59)
UA ' J

For the parabolic drag polar, f(X) is given by equation (4.8),

and the optimal lift coefficient control law of equation (4.58) becomes

°3
A sin a = - =5 — (4.60)

2 cos Y

while the optimal bank angle control law of equation (4.59) becomes

2
2 2 * a 3

(A co§ oo* G) = 1 + G - 2E G tan y - <* sin y -- 5 —
' ~- - • ' » .-• ~\4 cos Y

(4.61)
The constants of integration a_ and a,- are evaluated at the pre-

scribed end conditions.
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5. THE GENERAL SOLUTION

The discussion of the particular solutions in Section 4 indi-

cated that the integration of the last adjoint equation is singularly

difficult, especially in the case where the final position is pre-

scribed. Nevertheless, these particular solutions and the discussions

accompanying them have shed some light on the behavior of the optimal

variable lift control.

For the skip trajectory, the Contensou control law, equation (4.9),

shows that the optimal lift control oscillates about the maximum lift-

to-drag ratio. This is also true for the case of gliding flight to

achieve a maximum footprint, as shown by Fave's analysis, Refs. lU and

15. It is to be expected that this is a characteristic of a large

class of entry trajectories.

In this section an approximate lift control law for the general

case is developed. It is shown that this approximation affects primar-

ily the vertical component of the lift. The lateral component can be

obtained in essentially exact form.

The equations used in this section are the exact equations for

the state variables, equations (2.19). The Hamiltonian is given by

equation (3.2).

Thus, the equations for the first three adjoint variables are

dpl1 = 0
(5.1)

fy sin <J> p^ cos fy

Sr Z cos <j> tan y 3r Z cos 4> tan y
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dp_ p. sin ty p cos i/i p» sin ^ tan

dZ $r Z cos <j> tan y 3r Z tan y 3r Z tan y

(5.1, continued)

The integration of these three equations is precisely the same

as in Section 4.3. The adjoint variables p. , p_ , and p_ are ob-

tained exactly, introducing a.. , a_ , and a« as constants of in-

tegration.

P2 = a» cos 6 + a. sin 9 (5.2)

p_ = a- sin <j) - (a» sin 6 - a» cos 8) cos <j>

The adjoint variable p. has as its associated state variable,

u , which appears in the last two terms of the Hamiltonian. If, in

obtaining the differential equation for p, from the Hamiltonian, the

quantity G in the last Term is treated as a constant, an assumption

which is valid for both strong aerodynamic lifting maneuvers and smooth

equilibrium glide, the integral for p. is obtained as before.

P4u = a4 (5.3)

This integral, for the broad range of cases for which the one

assumption used, Loh's conjecture (Ref. 11), is very accurately satis-

fied, can be recognized as extremely accurate. For the case of vari-

able lift coefficient and bank angle control, equation (3.11) shows

that the lateral component of the lift has been obtained very accurately.
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Explicitly, this optimal control law is

. ,,. .a- sin <f> - (a, sin 6 - a~ cos 6) cos <j>
5f sin a = — ^T (5.4)dX 2 cos y

where ^

_ E 3 1a, =

a9 = —— (5.5)
2 &4

For the vertical component of the lift, equation (3.10) applies.

The control law depends on the adjoint variable, p_ . The state

variable associated with p is y , which enters explicitly every

term of the Hamiltonian. This makes a direct integration of the dif-

ferential equation for p_ highly unlikely. Therefore, as was done

before in Section 4, the differential equation for the Hamiltonian it-

self, equation (4.51), is used to determine p_

p1 cos ty p_ sin ijj p_ cos ip tan <j>dH
A 7 7 ? ~ 2

gr Z cos (j» tan y gr Z tan y gr Z tan y

(5.6)

P/.u

gr Z gr Z tan y

With the right-hand side written in terms of H , this becomes
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7dH . „ X -:P3
 Slng . ,

7-dZ + H = ~ ~1=- ( cosy + P5 C°S 0)vgr sin y

rf(X) _, .-I + X cos a tan

(5.7)

/$r~ sin

The optimal control law for variable lift coefficient, equation

(3.7), is used to eliminate p_ and p^ from this equation.

This equation for H is exact since no restrictive assumptions have

been made in deriving it.

There is one case for which equation (5.8) can be integrated

exactly, even without using the expression for p, in equation (5.3).

If the vehicle has a linear drag polar

f(X) 1, X (5.9)

so that, taking the proportionality constant equal to unity for conven-

ience ,

CD = c*x (sVio)

then the right-hand side of equation (5.8) is zero. The integration

is immediate.

This hypothetical case can still be realized, as is discussed by

Contensou, Ref . 5. Even if it is not the case, for an arbitrary polar

it can be assumed that near the point of maximum lift-to-drag ratio,

which, as discussed earlier, is the range of optimal lift control for
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many general problems, the drag polar is linear (Figure 7). Thus, the

right-hand side of equation C5.8) is approximately zero.

In the same spirit, an approximate law for the lift coefficient,

X , can be substituted in the right-hand side of equation (5.8) to in-

tegrate the equation. With the Contensou control, equation (4.9), equa-

tion (5 . 8) becomes

Z df + H = constant (5.11)

where the constant should be near zero since the optimal modulation of

the lift should remain near the maximum lift-to-drag ratio.

If the maximum lift-to-drag ratio program is used as a first ap-

proximation to enable one to perform the integration to obtain a better

approximation for the optimal lift control, equation (5.8) becomes

-0 (5.12)

which can be integrated to obtain

where a_ is the last constant of integration. Substitution of this

H into equation (3.2), and then that into the optimal control law,

equation (3 . 10) , gives

,f a,, sin _y *
f (X) - (X + G cos a) 2±- = -^ - + E G tan y

COS Y
H -- L[a1 cos 4* cos <j> + a7(cos 9 sin ty + sin 8 cos ty sin

+ a_(sin 6 sin ip - cos 0 cos ip sin <)>)]
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where
*
E a

(5.15)

Thus, equations (5.4) and (5.14) provide the optimal control

laws , for variable lift coefficient control and variable bank angle

control, in the general case where the final position is specified. In

contrast to the simpler cases of Section 4, these show the stabilizing

effect of the altitude in the Z appearing in the denominator, which

tends to drive the optimal control to the maximum lift-to-drag ratio

condition.
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6. CONCLUSION

The analytical solution presented in the previous section is the

general solution for the optimum three-dimensional aerodynamic control

of a lifting vehicle entering a planetary atmosphere. Ordinarily any

particular such optimal trajectory will be flown with lift and bank con-

trols well within the capabilities of the vehicle. However, for complete-

ness the possibilities of all four types of subarcs, equations (3.5),

must be considered. Such an optimal trajectory, composed of more than

one of the possible subarcs, must be pieced together using the proper

corner conditions. These corner conditions, or switching laws

are not discussed in this report. The simplest approach is to calculate

the optimal trajectory as if there were no limits on the lift coefficient

or the bank angle. The resulting optimal controls from equations (5.4)

and (5.14) are compared with the realistic bounds for the vehicle, equa-

tions (2.6). If the bounds are not exceeded, then the optimal trajectory

is wholly of type a) and no switching is involved.

Numerical determination of the optimal trajectory is straight-

forward, though in individual cases can be quite difficult. First, a

functional form for the general drag polar must be chosen. After that,

the problem is just the numerical solution of a boundary value problem.

It involves numerical integration of the differential equations combined

with a search of the four-space, (a.. , a« , a_ , a,.).

Depending upon the type of problem, the approach will vary slightly

because of differing sets of free or fixed end conditions. In general,

the constant vector a = (a.. , a_ , a_ , a,.) is selected, the exact equa-

tions of motion, equations (2.19), are integrated numerically, the values
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of a. are updated and the process repeated until the constrained final

relations and the transversality conditions of the given problem are satis-

fied.

In Section 4 of this report, several earlier particular solutions

employing various simplifying assumptions are shown to be special cases

of this general result. This demonstrates a certain universality of the

present development.

These results are comprehensive in that they apply to any problem

with any given end conditions. Of particular interest is the fact that

the results are valid for both constrained terminal position, and the

hitherto unchallenged problem of free terminal position.

The special set of exact equations of motion are given their par-

ticularly simple and useful form through the use of the dimensionless

variables referred to as modified Chapman variables. Hence, the equations

are named Chapman's exact equations. They are completely free of the

physical characteristics of the vehicle, and permit the use of a complete-

ly general lift-drag relationship.

The primary job remaining is to use these results to generate

families of optimal three-dimensional atmospheric entry trajectories

from which general qualities may be deduced.
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