28 research outputs found

    Granite magmatism and mantle filiation

    Get PDF
    Current granite magma generation models essentially reduce to two groups: (1) intra-crustal melting and (2) basaltic origin. A mixed, crustal, and basaltic origin and therefore a mantle filiation has been proposed for most granite magma types. In contrast, strongly peraluminous silicic magmas such as two-mica leucogranites have been classically interpreted as products of pure crustal melting. In this paper, we re-examine this interpretation and the evidence for considering leucogranites as unique among granite types. In the first part, some key aspects of the intra-crustal melting model are reviewed. Classical assumptions are discussed, such as the use of migmatites to infer granite generation processes. Our knowledge of crustal melt production is still incomplete, and fluid-present H2O-undersaturated melting should be considered in addition to mica dehydration melting reactions. The source rock remains essential as a concept despite difficulties in the identification of source lithologies from their geochemical and mineralogical signatures. Incorporating spatial and temporal variability at the source and the possibility of external inputs (fluids, magmas) would represent useful evolutions of the model. Thermal considerations bring strong constraints on the intra-crustal melting model since the absence of mafic magmas reduces possible external heat sources for melting. In the second part, the origin of a strongly peraluminous silicic volcanic suite, the Macusani Volcanics (SE Peru), is detailed. Magmas were generated in a mid-crustal anatectic zone characterized by high temperatures and heat fluxes. Crustal metamorphic rocks (metapelites) were dominant in the source region, although Ba-, Sr- and La-rich calcic plagioclase cores and some biotite and sanidine compositions point to the involvement of a mantle component. The heat necessary for melting was supplied by mafic mainly potassic–ultrapotassic magmas which also partly mixed and hybridized with the crustal melts. The Macusani Volcanics provide an example of a crustal peraluminous silicic suite generated with a contribution from the mantle in the form of mafic magmas intruded in the source region. This, as well as the limitations of the intra-crustal melting model, establishes that a mantle filiation is possible for peraluminous leucogranites as for most other crustal (S-, I- and A-type) peraluminous and metaluminous granites. This stresses the critical importance of the mantle for granite generation and opens the way for unification of granite generation processes.</p

    Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the 'smoking gun' of mantle melting and crustal growth during Cape granite genesis?

    Get PDF
    The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LASF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridized through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also lowvolume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.IS

    Data for: Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central)

    No full text
    Major and trace element compositions of micas from the granite of the St Sylvestre Leucogranite complex, (Limousin, Fance) and from the pegmatite of the Mont d&apos;Ambazac pegmatite field that are intrusive in the St Sylvestre leucogranite complex

    Data for: Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central)

    No full text
    Major and trace element compositions of micas from the granite of the St Sylvestre Leucogranite complex, (Limousin, Fance) and from the pegmatite of the Mont d&apos;Ambazac pegmatite field that are intrusive in the St Sylvestre leucogranite complex.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Isotopic variations in S-type granites: An inheritance from a heterogeneous source?

    No full text
    Inherited zircons from S-type granites provide exceptionally good insight into the isotopic heterogeneity of their sources. Zircons from four samples (one granite, two granodiorites, one granodioritic enclave) of Pan-African S-type granite of the Cape Granite Suite (c. 540 Ma) have been the subject of a laser LA-ICP-MS zircon U/Pb study to determine emplacement ages and inheritance. Zircons from three of these samples (2 granodiorites and 1 granodioritic enclave) were also analysed for Hf isotopes by LA-MC-ICP-MS. Ages of inherited cores range from 1,200 to 570 Ma and show Hafnium isotope values (ε Hf,t) for the crystallisation age (t) of the different cores that range from -14.1 to +9.1. Magmatic zircons and magmatic overgrowth with concordant spot ages between ca. 525 and ca. 555 Ma show a similar range of ε Hf,t, between -8.6 and +1.5, whilst ε Hf values calculated at 540Ma (ε Hf,540) for inherited cores range from -15.2 to +1.7. Thus, our results show that the time evolved ε Hf arrays of the inherited cores overlap closely with the ε Hf range displayed by the magmatic rims at the time of crystallisation of the pluton. These similarities imply a genetic relationship between magmatic and inherited zircons. Within the inherited cores, four main peak ages can be identified. This, coupled with their large Hf isotopic range, emphasises that the source of the granite is highly heterogeneous. The combination of the U/Pb zircon ages ranges and Hf isotope data implies that: (1) The source of S-type granite consists of crustal material recording several regional events between 1,200 and 600 Ma. This material records the recycling of a much older crust derived from depleted mantle between 1. 14 and 2.02 Ga. (2) The homogenisation of Hf isotopic variation in the magma acquired through dissolution of the entrained zircon, via mechanical mixing and/or diffusion between within the granite was particularly inefficient. (3) This evidence argues for the assembly of the pluton through many relatively small magma batches that undergo rapid cooling from their intrusion temperature (ca. 850°C) to background magma chamber temperature that is low enough to ensure that much of the magmatic zircon crystallised rapidly (&gt;80% by 700°C). (4) There is no evidence for the addition of mantle-derived material in the genesis of S-type Cape Granite Suite, where the most mafic granodiorites are strongly peraluminous, relatively low in CaO and K 2O rich. Interpreted more widely, these findings imply that S-type granites inherit their isotopic characteristic from the source. Source heterogeneity transfers to the granite magma via the genesis of discrete magma batches. The information documented from the S-type CGS zircons has been recorded because the individual batches of magma crystallised the bulk of their magmatic zircon prior to mechanical or diffusional magma homogenisation. This is favoured by zirconium saturation in the magma shortly after emplacement, by partial dissolution of the entrained zircon fraction, as well as by the intrusion of volumetrically subordinate magma batches into a relatively cool pluton. Consequently, evidence recorded within inherited cores will most likely be best preserved in S-type granite plutons intruded at shallow depths. Other studies that have documented similar ε Hf arrays in magmatic zircons have interpreted these to reflect mixing between crustal- and mantle-derived magmas. This study indicates that such arrays may be wholly source inherited, reflecting mixing of a range of crustal materials of different ages and original isotopic signatures. © 2011 Springer-Verlag

    Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: Microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa)

    No full text
    International audienceRelationships between the metamorphic basement, granitic intrusions and the Kandi Shear Zone (KSZ) in central Bénin have been investigated using petrological and structural approaches, in order to better understand the space and time parameters of the Pan-African shear deformation and the Ediacaran magmatism. In central Bénin, metamorphic rocks from the KSZ display a steep to vertical N–S trending foliation, a sub-horizontal mineral lineation together with kinematic indicators in agreement with a dextral transcurrent mega-shear zone. Four granitic intrusions (Dassa, Tré, Gobada and Tchetti) show many petrological similarities. They are biotite ± amphibole – ilmenite ± magnetite monzogranites with ferrous and metaluminous I-type features derived from high-K calk-alkaline magma. A fifth intrusion (Fita) is an alkali-feldspar, biotite, magnetite and ilmenite bearing granite crystallized from an alkaline magma. Moreover, high K2O, Zr, Y, Nb and low CaO, MgO and Al2O3 contents together with high (FeOt/MgO) and low LIL/HFS elements ratios suggesting an A-type granite affinity.Microstructural and AMS investigations presented in this paper show (i) solid-state deformation evidence for Dassa pluton and (ii) a magmatic deformation for the Tré, Tchetti, Gobada and Fita granitoids. Foliation in Dassa is parallel to the mesoscopic planar mylonitic foliation of the metamorphic basement. In the Tré, Tchetti, Gobada and Fita granitoids, magmatic textures and magnetic fabrics are coherent with the KSZ activity. These data suggest (i) a syn-kinematic nature for most of the intrusions (Tré, Gobada, Tchetti and Fita), except Dassa which correspond to an earlier event (ii) the succession of high-K calk-alkaline (Dassa, Tré, Gobada, Tchetti) evolves toward alkaline magmas (Fita) during the KSZ strike-slip tectonics. These observations highlight the changing nature of magma composition, magmatic processes and the different sources during KSZ activity in the Bénin Nigerian Shield. These new results suggest that the previous geodynamic interpretations, which assume a post-tectonic emplacement for the Gobada intrusion or an active continental margin setting for most of the late Pan-African (Ediacaran) granites intruded in central Bénin, has to be re-examined

    Clinical Characteristics and Multimodal Imaging Findings of Central Serous Chorioretinopathy in Women versus Men.

    No full text
    (1) The aim of this study was to compare the clinical characteristics and multimodal imaging findings of central serous chorioretinopathy (CSCR) between women and men. (2) Women and men with CSCR were compared in terms of their age and risk factors, the clinical form of their disease, multimodal imaging findings and the presence of macular neovascularization (MNV) on optical coherence tomography (OCT)-angiography. (3) Results: The data of 75 women and 75 men were compared. The women were significantly older than the men (52.2 years versus 45.7 years; p &amp;lt; 0.001). Corticosteroid intake was more frequent in the women (56% versus 40%; p = 0.05). The women had a single foveal subretinal detachment more often than the men (73.3% versus 46.9%; p &amp;lt; 0.001) and they often had fewer gravitational tracks (16.3% versus 29.6%; p = 0.03). On mid-phase indocyanine green angiography, hyperfluorescent plaques were detected less often in the women than in the men (48% versus 72.2%, p = 0.001). MNV was detected on OCT-angiography in 35.9% of the women and in 13.3% of the men (p = 0.004). (4) In the women, CSCR occurs at an older age, is more often unifocal foveolar, and is associated with a higher rate of MNV. The reasons for these gender-related differences remain to be determined

    Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth

    No full text
    International audienceEarth's continental crust is dominantly made of buoyant, felsic igneous material (granitoids), that were ultimately extracted from the mantle as a result of Earth's differentiation. Since felsic melts are not in chemical equilibrium with the mantle, they can originate either from melting of older crustal lithologies, or from differentiation of a primitive mantle melt; only the latter case will contribute to crustal growth. To understand the mechanisms of continental crust growth and differentiation through time, it is therefore necessary to unravel the respective contribution of these two different mechanisms in the genesis of granitoid suites. In modern Earth, granitoids are chiefly generated in convergent plate boundaries (subduction and collision). This paper examines the granitic suites in a late-collision environment, the Variscan French Massif Central (FMC), and compares them with the suites found in an oceanic arc. We therefore describe, and compare, two end-members sites of granite generation.In the FMC, several main types of granites are described. Muscovite and Cordierite bearing Peraluminous Granites (resp. MPG and CPG) contain large amounts of inherited zircons, and their chemistry demonstrates that their sources were older crustal material (resp. Metasediments and metaigneous). On the other hand, Potassic Calc-alkaline Granites (KCG), associated to potassic diorites (vaugnerites) do not contain inherited zircons, and ultimately derive from the vaugnerites. The vaugnerites in turns form by partial melting of a mantle contaminated by the regional crust. Therefore, although they are isotopically similar to the crust, the KCG are net contributors to crustal growth. Thus we conclude that although late-orogenic settings are dominated by crustal melting and recycling, they may be sites of net crustal growth, even though this is not visible from isotopes only. In contrast, arc granitoids are purely or almost purely mantle derived. However, the preservation potential of arcs is much smaller than the preservation of late-orogenic domains, such that at the scale of a whole orogenic belt, late-orogenic magmatism is probably as important as arc magmatism.Finally, we speculate that the situation may have been similar in the Archaean, or even more skewed towards late-orogenic sites (or similar environments, dominated by melting of a altered mafic protocrust), owing to the hotter mantle and less stable subductions during that period

    High Levels of C-Reactive Protein with Low Levels of Pentraxin 3 as Biomarkers for Central Serous Chorioretinopathy

    No full text
    PURPOSE: To investigate the association between the 2 acute phase proteins, C-reactive protein (CRP) and pentraxin 3 (PTX3) with central serous chorioretinopathy (CSCR), as PTX3 is a glucocorticoid-induced protein. DESIGN: Cross-sectional multicenter study. PARTICIPANTS: Patients with CSCR compared with age- and sex-matched healthy participants. METHODS: Patients with CSCR from 3 centers in Europe were included in the study. The clinical form of CSCR was recorded. Blood samples from patients with CSCR and healthy participants were sampled, and high-sensitivity CRP and PTX3 levels were measured in the serum. MAIN OUTCOME MEASURES: C-reactive protein and PTX3 serum level comparison between patients with CSCR with age- and sex-matched healthy participants. RESULTS: Although CRP levels were higher in patients with CSCR (n = 216) than in age- and sex-matched controls (n = 130) (2.2 ± 3.2 mg/l vs. 1.5 mg/l ± 1.4, respectively, P = 0.037), PTX3 levels were lower in patients with CSCR (10.5 ± 19.9 pg/ml vs. 87.4 ± 73.2 pg/ml, respectively, P < 0.001). There was no significant difference in CRP or PTX3 levels between patients with acute/recurrent and chronic CSCR. CONCLUSIONS: In patients with CSCR, high CRP and low PTX3 levels suggest a form of low-grade systemic inflammation together with a lack of glucocorticoid pathway activation, raising new hypotheses on the pathophysiology of CSCR. FINANCIAL DISCLOSURES: The author(s) have no proprietary or commercial interest in any materials discussed in this article
    corecore