73 research outputs found

    Batalin-Vilkovisky gauge-fixing of a chiral two-form in six dimensions

    Get PDF
    We perform the gauge-fixing of the theory of a chiral two-form boson in six dimensions starting from the action given by Pasti, Sorokin and Tonin. We use the Batalin-Vilkovisky formalism, introducing antifields and writing down an extended action satisfying the classical master equation. Then we gauge-fix the three local symmetries of the extended action in two different ways.Comment: 15 pages, latex, no figures, version accepted by Class. Quant. Gra

    First records of the dwarf surf clam <i>Mulinia lateralis</i> (Say, 1822) in Europe

    Get PDF
    This paper reports the first records of the dwarf surf clam Mulinia lateralis (Say, 1822) outside its native area, which is the western Atlantic Ocean, ranging from the Gulf of St Lawrence to the Gulf of Mexico. In 2017 and 2018 specimens were found in the Dutch coastal waters (North Sea), in the Wadden Sea and in the Westerschelde estuary, in densities of up to almost 6000 individuals per square meter. In view of its ecology and distributional range in the native area M. lateralis has the potential to become an invasive species. Its ability to quickly colonize defaunated areas, its high fecundity and short generation time, its tolerance for anoxia and temperature extremes and its efficient exploitation of the high concentrations of phytoplankton and natural seston at the sediment-water interface may bring it into competition with native species for food and space

    National societies' needs as assessed by the ESTRO National Societies Committee survey: A European perspective

    Get PDF
    Purpose: To determine how ESTRO can collaborate with Radiation Oncology National Societies (NS) according to its mission and values, and to define the new roadmap to strengthen the NS network role in the forthcoming years. Materials and methods: The ESTRO NS committee launched a survey addressed to all European National Societies, available online from June 5th to October 30th 2018. Questions were divided into three main sections: (1) general information about NS; (2) relevant activities (to understand the landscape of each NS context of action); (3) relevant needs (to understand how ESTRO can support the NS). Eighty-nine European NS were invited to participate. Respondents were asked to rank ESTRO milestones in order of importance, indicating the level of priority to their society. Results: A total of 58 out of 89 NS (65.2%) from 31 European countries completed the questionnaire. The majority of NS ranked “Optimal patient care to cure cancer and to reduce treatment-related toxicity” as the highest level of priority. This aligns well with the ESTRO vision 2030 “Optimal health for all together.” NS also indicated a high need for more consensus guidelines and exchange of best practices, access to high quality accredited education, implementation of the ESTRO School Core Curriculum at the national level, and defining quality indicators and standard in Radiation Oncology, improved communication and increased channelling of information. Conclusion: The results of this survey will be used to strengthen the relations between ESTRO and European NS to promote and develop initiatives to improve cancer care

    Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air-Liquid Interface Cultured Human Primary Bronchial Epithelial Cells

    Get PDF
    The current COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has an enormous impact on human health and economy. In search for therapeutic options, researchers have proposed resveratrol, a food supplement with known antiviral, anti-inflammatory, and antioxidant properties as an advantageous antiviral therapy for SARS-CoV-2 infection. Here, we provide evidence that both resveratrol and its metabolically more stable structural analog, pterostilbene, exhibit potent antiviral properties against SARS-CoV-2 in vitro. First, we show that resveratrol and pterostilbene antiviral activity in African green monkey kidney cells. Both compounds actively inhibit virus replication within infected cells as reduced virus progeny production was observed when the compound was added at post-inoculation conditions. Without replenishment of the compound, antiviral activity was observed up to roughly five rounds of replication, demonstrating the long-lasting effect of these compounds. Second, as the upper respiratory tract represents the initial site of SARS-CoV-2 replication, we also assessed antiviral activity in air–liquid interface (ALI) cultured human primary bronchial epithelial cells, isolated from healthy volunteers. Resveratrol and pterostilbene showed a strong antiviral effect in these cells up to 48 h post-infection. Collectively, our data indicate that resveratrol and pterostilbene are promising antiviral compounds to inhibit SARS-CoV-2 infection. Because these results represent laboratory findings in cells, we advocate evaluation of these compounds in clinical trials before statements are made whether these drugs are advantageous for COVID-19 treatment

    Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis

    Get PDF
    Dietary carbohydrate fibers are known to prevent immunological diseases common in Western countries such as allergy and asthma but the underlying mechanisms are largely unknown. Until now beneficial effects of dietary fibers are mainly attributed to fermentation products of the fibers such as anti-inflammatory short-chain fatty acids (SCFAs). Here, we found and present a new mechanism by which dietary fibers can be anti-inflammatory: a commonly consumed fiber, pectin, blocks innate immune receptors. We show that pectin binds and inhibits, toll-like receptor 2 (TLR2) and specifically inhibits the proinflammatory TLR2-TLR1 pathway while the tolerogenic TLR2-TLR6 pathway remains unaltered. This effect is most pronounced with pectins having a low degree of methyl esterification (DM). Low-DM pectin interacts with TLR2 through electrostatic forces between non-esterified galacturonic acids on the pectin and positive charges on the TLR2 ectodomain, as confirmed by testing pectin binding on mutated TLR2. The anti-inflammatory effect of low-DM pectins was first studied in human dendritic cells and mouse macrophages in vitro and was subsequently tested in vivo in TLR2-dependent ileitis in a mouse model. In these mice, ileitis was prevented by pectin administration. Protective effects were shown to be TLR2-TLR1 dependent and independent of the SCFAs produced by the gut microbiota. These data suggest that low-DM pectins as a source of dietary fiber can reduce inflammation through direct interaction with TLR2-TLR1 receptors

    Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs) can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP) by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also.</p> <p>Methods</p> <p>By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC). Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine). As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg) and 1 h (50 mg) before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage) or adenosine (1 g per dosage) were administered via enteric-coated hydroxypropyl methylcellulose (HPMC) capsules with Eudragit<sup>© </sup>L30D-55.</p> <p>Results</p> <p>Median urinary lactulose/rhamnose excretion ratio (g/g) in the control condition was 0.032 (interquartile range: 0.022–0.044). Compared to the control condition, lactulose/rhamnose ratio after ingestion of indomethacin plus placebo was significantly increased to 0.039 (0.035–0.068); P < 0.01). The indomethacin-induced increase was neither affected by administration of encapsulated ATP (0.047 (0.033–0.065)) nor adenosine (0.050 (0.030–0.067)). Differences in L/R ratios between the conditions with indomethacin plus placebo, ATP or adenosine were not significant.</p> <p>Conclusion</p> <p>In this study, either ATP or adenosine administered via enteric-coated capsules had no effect on indomethacin-induced small intestinal permeability changes in healthy human volunteers. The observed lack of effect of encapsulated ATP/adenosine may have been caused by opening of the enteric-coated supplement at a site distal from the indomethacin-inflicted site. Further studies on site-specific effectiveness of ATP/adenosine on intestinal permeability changes are warranted.</p

    Cross-Species Comparison of Genes Related to Nutrient Sensing Mechanisms Expressed along the Intestine

    Get PDF
    Introduction Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as “nutrient sensing”. Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. Aim To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. Methods Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. Results and conclusion The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man

    Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features

    Get PDF
    BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life

    A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of mutant copper/zinc superoxide dismutase (<it>SOD1</it>) in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS). Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A) and wild type (TG WT) human <it>SOD1 </it>transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin β-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus.</p> <p>Results</p> <p>TG SOD1 G93A but not TG SOD1 WT microglia had lower expression levels of the cell adhesion molecule subunit integrin β-1 than their NTG control cells [NTG (G93A) and NTG (WT), respectively, 92.8 ± 2.8% on TG G93A, 92.0 ± 6.6% on TG WT, 100.0 ± 1.6% on NTG (G93A), and 100.0 ± 2.7% on NTG (WT) cells], resulting in decreased spreading ability, with no effect on ability to migrate. Both TG G93A and TG WT microglia had reduced capacity to phagocytose apoptotic neuronal cell debris (13.0 ± 1.3% for TG G93A, 16.5 ± 1.9% for TG WT, 28.6 ± 1.8% for NTG (G93A), and 26.9 ± 2.8% for NTG (WT) cells). Extracellular stimulation of microglia with ATP resulted in smaller increase in intracellular free calcium in TG G93A and TG WT microglia relative to NTG controls (0.28 ± 0.02 μM for TG G93A, 0.24 ± 0.03 μM for TG WT, 0.39 ± 0.03 μM for NTG (G93A), and 0.37 ± 0.05 μM for NTG (WT) microglia).</p> <p>Conclusions</p> <p>These findings indicate that, under resting conditions, microglia from mutant <it>SOD1 </it>transgenic mice have a reduced capacity to elicit physiological responses following tissue disturbances and that higher levels of stimulatory signals, and/or prolonged stimulation may be necessary to initiate these responses. Overall, resting mutant <it>SOD1</it>-overexpressing microglia may have reduced capacity to function as sensors of disturbed tissue/cellular homeostasis in the CNS and thus have reduced neuroprotective function.</p
    corecore