596 research outputs found

    A Closer Look at Jamnitzer's Polyhedra

    Get PDF
    The Renaissance artist Wentzel Jamnitzer designed series of intriguing polyhedra in perspective in his book “Perspectiva Corporum Regularium”. In this paper we investigate the possible principles of the construction of the polyhedra and create 3D computer models of them. Comparing those to the originals, we get an idea of how successful he was in drawing the complex structures by imagination. Furthermore, we analyse Jamnitzer's use of linear perspective, an important key in creating such drawings

    Novice Explanations Of Hurricane Formation Offer Insights Into Scientific Literacy And The Development Of Expert-Like Conceptions

    Get PDF
    The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students’ prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise.  The gap in knowledge about the alternate conceptions that novices have about many of Earth’s complex phenomena (National Research Council, 2012), however, makes this type of engagement in geoscience courses challenging.  This study helps to fill this gap by identifying and describing how novices to geoscience explain a complex scientific phenomenon, hurricane formation.  Using a pragmatism methodology, 326 students in introductory-level geoscience courses at two public universities in the United States of America, in Georgia (n=168) and Nebraska (n=158), were surveyed.  The questionnaire was designed to target and collect novices’ explanations of a single complex Earth phenomenon – hurricane formation.  Constant comparative analyses of textual content and diagrams revealed a variety of alternate conceptions.  The data suggess that novices seldom invoke scientific first principles, which students matriculating through the education system are expected to learn before college, in their explanations.  Two theoretical models synthesize the alternate conceptions and illustrate pathways of conceptual change along which students might move from more novice-like to more expert-like ways of scientific thinking.  Our findings provide a basis for the development of instructional activities that aid students in developing more expert-like conceptions of hurricane formation and other complex Earth phenomena

    Optimising finishing pig delivery weight : participatory decision problem analysis

    No full text
    The seemingly straightforward question of optimal pig delivery weight is more complex than meets the eye. Despite abundant research insights, the industry continues to request additional applied scientific decision support on the delivery weight problem. The current objective is to investigate whether and how the complex decision of delivery weight can be reshaped (reframed) into a more tangible and comprehensible system of factors that matter for making the right decision. We used a participatory decision problem analysis, which resulted in modelling blueprints that incorporate factors prioritised by stakeholders for determining optimal delivery weights. How to efficiently organise such a 'problem reframing process' is case-specific: it depends on the objective, the initial problem understanding by the stakeholders, and their learning potential. Efficient co-learning is a prerequisite for successful participatory problem analysis. Our study reveals that the first step in such a process of 'problem reframing' should therefore be to answer the question of how to effectively organise co-learning among stakeholders and researchers, instead of starting with a correct and detailed representation of the problem. Useful guidelines for participatory problem reframing processes are (1) providing sufficient participatory learning steps, (2) having few and clearly defined objectives per learning step, (3) providing adapted learning tools per step, (4) establishing a common language and (5) deliberately choosing stakeholders based on prior knowledge of the problem or its context, potential motivation or incentives to be part of the participatory process step and potential role in up-scaling the co-learning process to a larger group of beneficiaries

    On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.We have used Radar Altimeter 2 (RA-2) onboard ESA's EnviSAT and Geosciences Laser Altimeter System (GLAS) onboard NASA's ICESat to map the elevation change of the Flade Isblink Ice Cap (FIIC) in northern Greenland. Based on RA-2 data we show that the mean surface elevation change of the FIIC has been near zero (0.03±0.03 m/a) between fall 2002 and fall 2009. We present the elevation change rate maps and assess the elevation change rates of areas above the late summer snow line (0.09±0.04 m/a) and below it (-0.16±0.05 m/a). The GLAS elevation change rate maps show that some outlet glaciers, previously reported to have been in a surge state, are thickening rapidly. Using the RA-2 measured average elevation change rates for different parts of the ice cap we present a mass change rate estimate of 0.0±0.5 Gt/a for the FIIC. We compare the annual elevation changes with surface mass balance (SMB) estimates from a regional atmospheric climate model RACMO2. We find a strong correlation between the two (R = 0.94 and P < 0.002), suggesting that the surface elevation changes of the FIIC are mainly driven by net SMB. The correlation of modeled net SMB and measured elevation change is strong in the southern areas of the FIIC (R = 0.97 and P < 0.0005), but insignificant in the northern areas (R = 0.38 and P = 0.40). This is likely due to higher variability of glacier flow in the north relative to the south. Copyright 2011 by the American Geophysical Union

    Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations

    Get PDF
    This study uses data from six on-ice weather stations, calibrated MODIS-derived albedo and proglacial river gauging measurements to drive and validate an energy balance model. We aim to quantify the record-setting positive temperature anomaly in 2010 and its effect on mass balance and runoff from the Kangerlussuaq sector of the Greenland ice sheet. In 2010, the average temperature was 4.9 °C (2.7 standard deviations) above the 1974–2010 average in Kangerlussuaq. High temperatures were also observed over the ice sheet, with the magnitude of the positive anomaly increasing with altitude, particularly in August. Simultaneously, surface albedo was anomalously low in 2010, predominantly in the upper ablation zone. The low albedo was caused by high ablation, which in turn profited from high temperatures and low winter snowfall. Surface energy balance calculations show that the largest melt excess (&amp;sim;170%) occurred in the upper ablation zone (above 1000 m), where higher temperatures and lower albedo contributed equally to the melt anomaly. At lower elevations the melt excess can be attributed to high atmospheric temperatures alone. In total, we calculate that 6.6 &amp;plusmn; 1.0 km&lt;sup&gt;3&lt;/sup&gt; of surface meltwater ran off the ice sheet in the Kangerlussuaq catchment in 2010, exceeding the reference year 2009 (based on atmospheric temperature measurements) by &amp;sim;150%. During future warm episodes we can expect a melt response of at least the same magnitude, unless a larger wintertime snow accumulation delays and moderates the melt-albedo feedback. Due to the hypsometry of the ice sheet, yielding an increasing surface area with elevation, meltwater runoff will be further amplified by increases in melt forcings such as atmospheric heat

    Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice

    Full text link
    Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally relevant. Simulating topological states of matter is one of the holy grails in the field. Here, we experimentally realize a higher-order electronic topological insulator (HOTI). Specifically, we create a dimerized Kagome lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface using a scanning tunneling microscope (STM). We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, while it is absent in the trivial one. Contrarily to conventional topological insulators (TIs), the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to quantum simulation with artificial lattices holds promises of revealing unexpected quantum phases of matter

    Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica

    Get PDF
    A narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station. TerraSAR-X images (acquired in stripmap mode) were used to compile a time series. The ice bridge bent most strongly in its narrowest part (westerly), while the northern end (near Charcot Island) shifted in a northeasterly direction. In the south, the ice bridge experienced compressive strain parallel to its long axis. GPS position data were acquired a little south of the narrowest part of the ice bridge from 19 January 2009. Analysis of these data showed both cyclic and monotonic components of motion. Meteorological data and re-analysis of the output of weather-prediction models indicated that easterly winds were responsible for the cyclic motion component. In particular, wind stress on the rough ice melange that occupied the area to the east exerted significant pressure on the ice bridge. The collapse of the ice bridge began with crack formation in the southern section parallel to the long axis of the ice bridge and led to shattering of the southern part. Ultimately, the narrowest part, only 900 m wide, ruptured. The formation of many small icebergs released energy of >125 Ă— 106 J
    • …
    corecore