9 research outputs found

    Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry

    Get PDF
    Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species

    A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus)

    Full text link
    The physiological basis for population differentiation of dispersal timing during individual development in male wild house mice is still unknown. As major urinary proteins (MUPs) are known to convey information about competitive ability in male mice, we examined individual MUP profiles defined by isoelectric-focusing (IEF) patterns in relation to developmental timing of dispersive motivation. As an experimental paradigm marking the development of the dispersal propensity, we used agonistic onset between litter mate brothers when kept in pairs under laboratory conditions. Agonistic onset is known to reflect the initiation of dispersive motivation. Hence, we compared individual MUP IEF patterns between fraternal pairs that did or did not develop agonistic relationships before the age of 2 months. Urine was collected on the day of weaning and at the beginning of adulthood. We investigated whether there was a significant co-occurrence of particular MUP IEF patterns with the agonistic onset in male mice. We assumed that, based on this co-occurrence, particular MUP IEF patterns and/or a particular dynamic of MUP IEF expression from weaning to adulthood may be considered a physiological predictor of a specific behavioral strategy in male mice (i.e. submissive-philopatric or agonistic-dispersive strategy). We found that agonistic males expressed more MUP IEF bands than amicable ones at weaning, but these differences disappeared later on. The presence of two particular IEF bands at weaning was significantly associated with early agonistic onset. Our study suggests that MUPs could have a predictive value for the onset of aggressive behavior and dispersal tendency in male wild house mice

    Adipose gene expression response of lean and obese mice to short-term dietary restriction

    No full text
    van Schothorst EM, Keijer J, Pennings JLA, et al. Adipose gene expression response of lean and obese mice to short-term dietary restriction. Obesity (Silver Spring). 2006;14(6):974-979.Overweight and obesity lead to higher morbidity risks, which are alleviated even by mild weight loss. To gain insight in the molecular effects of weight loss in adipose tissue, we analyzed the effects of short-term dietary restriction (DR) on mice fed a low-fat diet (lean mice) or a high-fat diet (obese mice). Female C57Bl6/J mice on both diets were on DR until an average body weight loss of 20%, which was achieved in 8 to 12 days depending on body weight at the start of DR. Plasma free fatty acids and blood glucose levels decreased significantly on DR. In the (restricted) low-fat diet groups, gene expression analysis using adipose-enriched cDNA microarrays revealed only two transcripts to be significant differentially expressed by DR: up-regulation of malic enzyme (Mod1) and down-regulation of major urinary protein 1 (Mup1). Real-time polymerase chain reaction analysis confirmed these findings and showed, for the high-fat diet groups, an identical expression pattern for Mup1, whereas Mod1 showed an opposed gene expression pattern for the high-fat diet groups. In conclusion, initial weight loss induces transcriptional changes only in a very small number of adipose genes, which also depends on the (restricted) diet used

    Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems

    No full text
    corecore