53 research outputs found

    A novel treatment of cystic fibrosis acting on-target:cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR

    Get PDF
    We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (P<0.001) in Phe508del/Phe508del or Phe508del/null-Cftr (but not in Cftr-null mice), provided that such mice were autophagy-competent. Primary nasal cells from patients bearing different class II CFTR mutations, either in homozygous or compound heterozygous form, responded to the treatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts ‘on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9

    Uptake, cell penetration and metabolic processing of exogenously administered GM1 ganglioside in rat brain

    No full text
    GM1 ganglioside, after intravenous injection into rats, is absorbed and taken up by various organs and tissues, including brain. The capacity of brain to take up gangliosides, referred to weight unit, is comparable to that of kidney and muscle. After injection of [Gal-(3)H]GM1 a relevant portion of brain associated radioactivity resided in the soluble fraction and was of a volatile nature. After brain subcellular fractionation, the lysosomal, plasma membrane and Golgi apparatus fractions carried the highest specific radioactivity. In addition, an enriched fraction of brain capillaries was highly labelled, suggesting that GM1 ganglioside is also tightly bound to the vessel walls. The metabolic events encountered in brain by exogenous gangliosides were investigated, in detail, after intracisternal injection of [Sph-(3)H]GM1. The results obtained demonstrate that GM1 is extensively metabolized in brain. Besides the degradation products (GM2, GM3, lactosylceramide, glucosylceramide, ceramide), compounds of a biosynthetic origin were also found to be formed: these include GD1a, GD1b and sphingomyelin. All the above results could indicate that gangliosides, after intravenous administration to rats, are taken up by brain, bind to the capillary network, penetrate into neural cells, associate to both plasma membranes and intracellular structures and undergo metabolic processing with formation of a number of products of both catabolic and biosynthetic origin

    Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR

    No full text
    F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2\u3b1' catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches

    Anti-Inflammatory Performance of Lactose-Modified Chitosan and Hyaluronic Acid Mixtures in an In Vitro Macrophage-Mediated Inflammation Osteoarthritis Model

    No full text
    The development and progression of osteoarthritis (OA) is associated with macrophage-mediated inflammation that generates a broad spectrum of cytokines and reactive oxygen species (ROS). This study investigates the effects of mid-MW hyaluronic acid (HA) in combination with a lactose-modified chitosan (CTL), on pro-inflammatory molecules and metalloproteinases (MMPs) expression, using an in vitro model of macrophage-mediated inflammation. Methods. To assess chondrocyte response to HA and CTL in the presence of macrophage derived inflammatory mediators, cells were exposed to the conditioned medium (CM) of U937 activated monocytes and changes in cell viability, pro-inflammatory mediators and MMPs expression or ROS generation were analysed. Results. CTL induced changes in chondrocyte viability that are reduced by the presence of HA. The CM of activated U937 monocytes (macrophages) significantly increased gene expression of pro-inflammatory molecules and MMPs and intracellular ROS generation in human chondrocyte cultures. HA, CTL and their combinations counteracted the oxidative damage and restored gene transcription for IL-1\u3b2, TNF-\u3b1, Gal-1, MMP-3 and MMP-13 to near baseline values. Conclusions. This study suggests that HA-CTL mixture attenuated macrophage-induced inflammation, inhibited MMPs expression and exhibited anti-oxidative effects. This evidence provides an initial step toward the development of an early stage OA therapeutic treatmen

    Bottlenose dolphin (Tursiops truncatus) immortalized fibroblasts on novel 3D in vitro collagen-free scaffolds

    No full text
    : Dolphins, as apex predators, can be considered relevant sentinels of the health of marine ecosystems. The creation of 3D cell models to assess in vitro cell-to-cell and cell-to-matrix interactions in environmental-mimicking conditions, is of considerable interest. However, to date the establishment of cetacean 3D culture systems has not yet been accomplished. Thus, in this study, different 3D systems of bottlenose dolphin (Tursiops truncatus) skin fibroblasts have been analyzed. Particularly, novel scaffolds based on hyaluronic acid and ionic-complementary self-assembling peptides such as RGD-EAbuK and EAbuK-IKVAV have been compared to Matrigel. Histological and fluorescent staining, electron microscopy (TEM) analyses and viability assays have been performed and RT-PCR has been used to detect extracellular matrix (ECM) components produced by cells. Results showed that Matrigel induced cells to form aggregates with lower viability and no ECM production compared to the novel scaffolds. Moreover, scaffolds allowed dispersed cells to produce a collagenous ECM containing collagen1a1, laminin B1 and elastin. The HA-EAbuK-IKVAV scaffold resulted in the most suitable 3D model in terms of cell quantity and viability. The development of this innovative approach is the first step towards the possibility to create 3D in vitro models for this protected species

    Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion

    No full text
    Ferroptosis is a non-accidental, regulated form of cell death operated by lipid peroxidation under strict control of GPx4 activity. This is consistent with the notion that lipid peroxidation is initiated by radicals produced from decomposition of traces of pre-existing lipid hydroperoxides. The question, therefore, emerges about the formation of these traces of lipid hydroperoxides interacting with Fe2+. In the most realistic option, they are produced by oxygen activated species generated during aerobic metabolism. Screening for metabolic sources of superoxide supporting ferroptosis induced by GSH depletion, we failed to detect, in our cell model, a role of respiratory chain. We observed instead that the pyruvate dehydrogenase complex -as other \u3b1 keto acid dehydrogenases already known as a major source of superoxide in mitochondria- supports ferroptosis. The opposite effect on ferroptosis by silencing either the E1 or the E3 subunit of the pyruvate dehydrogenase complex pointed out the autoxidation of dihydrolipoamide as the source of superoxide. We finally observed that GSH depletion activates superoxide production, seemingly through the inhibition of the specific kinase that inhibits pyruvate dehydrogenase. In summary, this set of data is compatible with a scenario where the more electrophilic status produced by GSH depletion not only activates ferroptosis by preventing GPx4 activity, but also favors the formation of lipid hydroperoxides. In an attractive perspective of tissue homeostasis, it is the activation of energetic metabolism associated to a decreased nucleophilic tone that, besides supporting energy demanding proliferation, also sensitizes cells to a regulated form of death

    Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds

    No full text
    A shell of nanostructured ferric tannates was spontaneously developed on the surface of naked maghemite nanoparticles (SAMNs, the core) by a simple wet reaction with tannic acid (TA). The as obtained core–shell nanomaterial (SAMN@TA) displays specific electrocatalytic and surface properties, which significantly differ from parent maghemite. Thanks to the known proclivity of TA to interact with proteins, SAMN@TA was proposed as a support for the direct immobilization of an enzyme. A ternary functional nanobioconjugate (SAMN@TA@TvL) was successfully self-assembled by incubating laccase from Trametes versicolor (TvL) and SAMN@TA. The SAMN@TA@TvL hybrid was kinetically characterized with respect to the native enzyme and applied for building an easy-to-use analytical device for the detection of polyphenols. The electrochemical biosensor allowed the determination of polyphenols by square wave voltammetry in mixed water-methanol solutions. The system sensitivity was 868.9 ± 1.9nA ”M−1, the LOD was 81 nM and the linearity range was comprised between 100 nM and 10 ”M. The proposed approach was successfully applied to detect phenolics in blueberry extracts as real samples. Results suggest that SAMN@TA could be a promising, low cost and versatile tool for the creation of nano-bio-conjugates aimed at the development of new electrochemical sensing platforms
    • 

    corecore