329 research outputs found
Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons
A diagrammatic technique for two-particle vertex functions is used to
describe systematically the influence of spatial quantum coherence and
backscattering effects on transport properties of noninteracting electrons in a
random potential. In analogy with many-body theory we construct parquet
equations for topologically distinct {\em nonlocal} irreducible vertex
functions into which the {\em local} one-particle propagator and two-particle
vertex of the coherent-potential approximation (CPA) enter as input. To
complete the two-particle parquet equations we use an integral form of the Ward
identity and determine the one-particle self-energy from the known irreducible
vertex. In this way a conserving approximation with (Herglotz) analytic
averaged Green functions is obtained. We use the limit of high spatial
dimensions to demonstrate how nonlocal corrections to the (CPA)
solution emerge. The general parquet construction is applied to the calculation
of vertex corrections to the electrical conductivity. With the aid of the
high-dimensional asymptotics of the nonlocal irreducible vertex in the
electron-hole scattering channel we derive a mean-field approximation for the
conductivity with vertex corrections. The impact of vertex corrections onto the
electronic transport is assessed quantitatively within the proposed mean-field
description on a binary alloy.Comment: REVTeX 19 pages, 9 EPS diagrams, 6 PS figure
Migration and Localization of Metal Atoms on Strained Graphene
Reconstructed point defects in graphene are created by electron irradiation and annealing. By applying electron microscopy and density functional theory, it is shown that the strain field around these defects reaches far into the unperturbed hexagonal network and that metal atoms have a high affinity to the nonperfect and strained regions of graphene. Metal atoms are attracted by reconstructed defects and bonded with energies of about 2 eV. The increased reactivity of the distorted π-electron system in strained graphene allows us to attach metal atoms and to tailor the properties of graphene.Peer reviewe
Nanocapsule for Safe and Effective Methane Storage
A nanocapsule for safe and effective methane storage is investigated by the method of molecular dynamics. The mass content of methane in the nanocapsule reaches the value of 14.5 mass%. The nanocapsule consists of two parts: a locking chamber and a storage area. The locking chamber is the nanotube (10.10), open at one end, with a K@C601+endohedral complex inside it. The storage area is a nanotube (20.20). The locking chamber and the storage area are joined with each other and form T-junction. The locking chamber is opened at the methane filling and the discharge stages, and it is closed at the storage stage. Thanks to the locking chamber, methane molecules are stored in the nanocapsules under normal external conditions. Opening and closing of the locking chamber are carried out by the K@C601+endohedral complex displacement, which is done by the electric field action. The specific structure of the nanocapsule allows two aims to be reached: a high methane mass content and significant level of safety
Bundling up carbon nanotubes through Wigner defects
We show, using ab initio total energy density functional theory, that the
so-called Wigner defects, an interstitial carbon atom right besides a vacancy,
which are present in irradiated graphite can also exist in bundles of carbon
nanotubes. Due to the geometrical structure of a nanotube, however, this defect
has a rather low formation energy, lower than the vacancy itself, suggesting
that it may be one of the most important defects that are created after
electron or ion irradiation. Moreover, they form a strong link between the
nanotubes in bundles, increasing their shear modulus by a sizeable amount,
clearly indicating its importance for the mechanical properties of nanotube
bundles.Comment: 5 pages and 4 figure
The diffusion of carbon atoms inside carbon nanotubes
We combine electron irradiation experiments in a transmission electron microscope with kinetic Monte Carlo simulations to determine the mobility of interstitial carbon atoms in single-walled carbon nanotubes. We measure the irradiation dose necessary to cut nanotubes repeatedly with a focused electron beam as a function of the separation between the cuts and at different temperatures. As the cutting speed is related to the migration of displaced carbon atoms trapped inside the tube and to their recombination with vacancies, we obtain information about the mobility of the trapped atoms and estimate their migration barrier to be about 0.25 eV. This is an experimental confirmation of the remarkably high mobility of interstitial atoms inside carbon nanotubes, which shows that nanotubes have potential applications as pipelines for the transport of carbon atoms
Emergence of magnetism in graphene materials and nanostructures
Magnetic materials and nanostructures based on carbon offer unique
opportunities for future technological applications such as spintronics. This
article reviews graphene-derived systems in which magnetic correlations emerge
as a result of reduced dimensions, disorder and other possible scenarios. In
particular, zero-dimensional graphene nanofragments, one-dimensional graphene
nanoribbons, and defect-induced magnetism in graphene and graphite are covered.
Possible physical mechanisms of the emergence of magnetism in these systems are
illustrated with the help of computational examples based on simple model
Hamiltonians. In addition, this review covers spin transport properties,
proposed designs of graphene-based spintronic devices, magnetic ordering at
finite temperatures as well as the most recent experimental achievements.Comment: tutorial-style review article -- 18 pages, 19 figure
Temperature Sensitive Nanocapsule of Complex Structural Form for Methane Storage
The processes of methane adsorption, storage and desorption by the nanocapsule are investigated with molecular-dynamic modeling method. The specific nanocapsule shape defines its functioning uniqueness: methane is adsorbed under 40 MPa and at normal temperature with further blocking of methane molecules the K@C601+ endohedral complex in the nanocapsule by external electric field, the storage is performed under normal external conditions, and methane desorption is performed at 350 K. The methane content in the nanocapsule during storage reaches 11.09 mass%. The nanocapsule consists of tree parts: storage chamber, junction and blocking chamber. The storage chamber comprises the nanotube (20,20). The blocking chamber is a short nanotube (20,20) with three holes. The junction consists of the nanotube (10,10) and nanotube (8,8); moreover, the nanotube (8,8) is connected with the storage chamber and nanotube (10,10) with the blocking chamber. The blocking chamber is opened and closed by the transfer of the K@C601+ endohedral complex under electrostatic field action
Screened Coulomb interactions in metallic alloys: II Screening beyond the single-site and atomic sphere approximations
A quantitative description of the configurational part of the total energy of
metallic alloys with substantial atomic size difference cannot be achieved in
the atomic sphere approximation: It needs to be corrected at least for the
multipole moment interactions in the Madelung part of the one-electron
potential and energy. In the case of a random alloy such interactions can be
accounted for only by lifting the atomic sphere and single-site approximations,
in order to include the polarization due to local environment effects.
Nevertheless a simple parameterization of the screened Coulomb interactions for
the ordinary single-site methods, including the generalized perturbation
method, is still possible. We obtained such a parameterization for bulk and
surface NiPt alloys, which allows one to obtain quantitatively accurate
effective interactions in this system.Comment: 24 pages, 2 figure
(Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding
Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond
(111) surface, based on the effective many-body Brenner potential, yield the
Pandey reconstruction in agreement with \emph{ab-initio}
calculations and predict the existence of new meta-stable states, very near in
energy, with all surface atoms in three-fold graphite-like bonding. We believe
that the long-standing debate on the structural and electronic properties of
this surface could be solved by considering this type of carbon-specific
configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00).
For many additional details (animations, xyz files) see electronic supplement
to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm
- …