96 research outputs found

    Relationship of the phase and amplitude parameters with anisotropy of Muller-matrix invariants

    Get PDF
    A new azimuthally stable polarimetric method for processing of microscopic images of optically anisotropic structures of different biological layers histological sections is proposed. A new model of phase anisotropy definition of biological tissues by using superposition of Mueller matrices of linear birefringence and optical activity is proposed. The matrix element M44 has been chosen as the main information parameter, which value is independent of rotation angle of both sample and probing beam polarization plane

    Biomedical applications of Jones-matrix tomography to polycrystalline films of biological fluids

    Get PDF
    Algorithms for reconstruction of linear and circular birefringence-dichroism of optically thin anisotropic biological layers are presented. The technique of Jones-matrix tomography of polycrystalline films of biological fluids of various human organs has been developed and experimentally tested. The coordinate distributions of phase and amplitude anisotropy of bile films and synovial fluid taken from the knee joint are determined and statistically analyzed. Criteria (statistical moments of 3rd and 4th orders) of differential diagnostics of early stages of cholelithiasis and septic arthritis of the knee joint with excellent balanced accuracy were determined. Data on the diagnostic efficiency of the Jones-matrix tomography method for polycrystalline plasma (liver disease), urine (albuminuria) and cytological smears (cervical cancer) are presented

    Polarization-correlation optical microscopy of anisotropic biological layers

    Get PDF
    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined

    Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism

    Get PDF
    Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis

    Two-point Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues

    Get PDF
    The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues of different morphological structure. This method is based on a correlation ('two-point') generalization of traditional optical methods for analyzing 'one-point' distributions of polarization states of microscopic images of biological tissues. Analytical algorithms are obtained for describing the 'two-point' complex parameters of the Stokes vector image of a birefringent biological tissue. An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions of the magnitude and phase of the 'two-point' Stokes vector parameters. Within the framework of the statistical and correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological tissues of various morphological structures are found. A comparative analysis of the distribution of the 'single-point' and 'two-point' parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed a higher sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues compared to the single-point approach

    Stokes-correlometry analysis of biological tissues with polycrystalline structure

    Get PDF
    Utilizing Stokes-correlometry analysis a new diagnostic approach has been introduced for quantitative assessment of polarization images of histological sections of optically anisotropic biological tissues with different morphological structures and physiological conditions. The developed approach is based on the quantitative assessment of coordinate and phase distributions of the Stokes vector of scattered light. A combined use of statistic, correlation, and fractal analysis is used for resolving variations in optical anisotropy of biological samples. The proposed combined application of the statistical, correlation, and fractal-based evaluates of spatial distributions of `single-point' polarization azimuth, ellipticity, and `two-point' Stokes vector parameters of polarization images of biological tissues histological sections demonstrates a high accuracy (Ac ≥ 90%) in monitoring of optical anisotropy variations within biological tissues

    Degree of local depolarization determined for fields of laser radiation scattered by multilayer birefringentnetworks of protein crystals

    Get PDF
    Abstract. Represented in this work are theoretical basics for description of fields created by scattered coherent radiation with using the new correlation parameter -degree of local depolarization (DLD). The authors have adduced data of measurements of coordinate distributions for DLD in laser images of healthy and pathologically changed skin of a rat. Investigated are the values and ranges of changes in statistical (moments of the first to fourth orders), correlation (correlation area) and fractal (slopes and dispersion of extremes of logarithmic dependences for power spectra) parameters of coordinate distributions for DLD. Defined are objective criteria for diagnostics of oncological changes in the structure of rat skin

    Mueller-matrix imaging polarimetry elevated by wavelet decomposition and polarization-singular processing for analysis of specific cancerous tissue pathology

    Get PDF
    Significance Mueller-matrix polarimetry is a powerful method allowing for the visualization of malformations in biological tissues and quantitative evaluation of alterations associated with the progression of various diseases. This approach, in fact, is limited in observation of spatial localization and scale-selective changes in the poly-crystalline compound of tissue samples. Aim We aimed to improve the Mueller-matrix polarimetry approach by implementing the wavelet decomposition accompanied with the polarization-singular processing for express differential diagnosis of local changes in the poly-crystalline structure of tissue samples with various pathology. Approach Mueller-matrix maps obtained experimentally in transmitted mode are processed utilizing a combination of a topological singular polarization approach and scale-selective wavelet analysis for quantitative assessment of the adenoma and carcinoma histological sections of the prostate tissues. Results A relationship between the characteristic values of the Mueller-matrix elements and singular states of linear and circular polarization is established within the framework of the phase anisotropy phenomenological model in terms of linear birefringence. A robust method for expedited (up to ∼15 min) polarimetric-based differential diagnosis of local variations in the poly-crystalline structure of tissue samples containing various pathology abnormalities is introduced. Conclusions The benign and malignant states of the prostate tissue are identified and assessed quantitatively with a superior accuracy provided by the developed Mueller-matrix polarimetry approach

    Методи і засоби азимутально-інваріантної мюллер-матричної поляриметрії оптично-анізотропних біологічних шарів

    Get PDF
    Актуальність. Серед багаточисельних методів поляриметричного дослідження структури біологічних тканин особливе місце займає Мюллер-матрична поляриметрія (ММП). Даний метод дає виключно повну інформацію про поляризаційні прояви оптичних властивостей полікристалічної структури біологічних тканин різноманітних органів людини. Новим кроком у розвитку даної методики стало координатне картографування розподілів величини матричних елементів – Мюллер-матричних зображень (ММЗ). Проте, практичне застосування Мюллер-матричного методу у рутинній лабораторній практиці обмежено. Величина 12 із 16 елементів матриці Мюллера є залежною від повороту зразку відносно напряму опромінення. Тому актуальним є подальший розвиток та узагальнення методик ММП з використанням координатних розподілів набору Мюллер-матричних інваріантів (ММІ) – азимутально незалежних елементів матриці Мюллера, їхніх комбінацій, матричних векторів та кутів між ними. Мета роботи. Робота спрямована на теоретичне обґрунтування та експериментальну розробку метода азимутально-інваріантної поляриметрії частково-деполяризуючих оптично-анізотропних біологічних шарів на основі координатного Мюллер-матричного картографування гістологічних зрізів для диференціальної діагностики змін оптичної анізотропії, які пов’язані з виникненням патологічних станів. Результати. Запропоновано та обґрунтовано метод азимутально-інваріантного Мюллер-матричного картографування на прикладі оптично анізотропних зразків гістологічних зрізів міокарда. Одержано розподіли величини азимутально-інваріантного матричного елементу, суперпозиції матричних елементів та величини матричного вектору. Висновки. Визначено залежності величин статистичних моментів 1-го – 4-го порядків, які характеризують розподіли величин Мюллер-матричних інваріантів (ММІ) гістологічних зрізів міокарда. Проведено з позицій доказової медицини дослідження можливостей диференціації причини настання смерті внаслідок ішемічної хвороби серця (ІХС) та гострої коронарної недостатності (ГКН)

    3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues

    Get PDF
    Prostate cancer is the second most common cancer globally in men, and in some countries is now the most diagnosed form of cancer. It is necessary to differentiate between benign and malignant prostate conditions to give accurate diagnoses. We aim to demonstrate the use of a 3D Mueller matrix method to allow quick and easy clinical differentiation between prostate adenoma and carcinoma tissues with different grades and Gleason scores. Histological sections of benign and malignant prostate tumours, obtained by radical prostatectomy, were investigated. We map the degree of depolarisation in the different prostate tumour tissues using a Mueller matrix polarimeter set-up, based on the superposition of a reference laser beam with the interference pattern of the sample in the image plane. The depolarisation distributions can be directly related to the morphology of the biological tissues. The dependences of the magnitude of the 1st to 4th order statistical moments of the depolarisation distribution are determined, which characterise the distributions of the depolarisation values. To determine the diagnostic potential of the method three groups of histological sections of prostate tumour biopsies were formed. The first group contained 36 adenoma tissue samples, while the second contained 36 carcinoma tissue samples of a high grade (grade 4: poorly differentiated-4 + 4 Gleason score), and the third group contained 36 carcinoma tissue samples of a low grade (grade 1: moderately differentiated-3 + 3 Gleason score). Using the calculated values of the statistical moments, tumour tissues are categorised as either adenoma or carcinoma. A high level (> 90%) accuracy of differentiation between adenoma and carcinoma samples was achieved for each group. Differentiation between the high-grade and low-grade carcinoma samples was achieved with an accuracy of 87.5%. The results demonstrate that Mueller matrix mapping of the depolarisation distribution of prostate tumour tissues can accurately differentiate between adenoma and carcinoma, and between different grades of carcinoma. This represents a first step towards the implementation of 3D Mueller matrix mapping for clinical analysis and diagnosis of prostate tumours
    corecore