340 research outputs found

    Using ion mobility spectrometry-mass spectrometry to decipher the conformational and assembly characteristics of the hepatitis B capsid protein.

    Get PDF
    The structural and functional analysis of the core protein of hepatitis B virus is important for a full understanding of the viral life cycle and the development of novel therapeutic agents. The majority of the core protein (CP149) comprises the capsid assembly domain, and the C-terminal region (residues 150-183) is responsible for nucleic acid binding. Protein monomers associate to form dimeric structural subunits, and helices 3 and 4 (residues 50-111 of the assembly domain) have been shown to be important for this as they constitute the interdimer interface. Here, using mass spectrometry coupled with ion mobility spectrometry, we demonstrate the conformational flexibility of the CP149 dimer. Limited proteolysis was used to locate involvement in this feature to the C-terminal region. A genetically fused CP dimer was found to show decreased disorder, consistent with a more restricted C-terminus at the fusion junction. Incubation of CP149 dimer with heteroaryldihydropyrimidine-1, a small molecule known to interfere with the assembly process, was shown to result in oligomers different in shape to the capsid assembly-competent oligomers of the fused CP dimer. We suggest that heteroaryldihydropyrimidine-1 affects the dynamics of CP149 dimer in solution, likely affecting the ratio between assembly active and inactive states. Therefore, assembly of the less dynamic fused dimer is less readily misdirected by heteroaryldihydropyrimidine-1. These studies of the flexibility and oligomerization properties of hepatitis B virus core protein illustrate both the importance of C-terminal dynamics in function and the utility of gas-phase techniques for structural and dynamical biomolecular analysis

    Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    Get PDF
    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug–cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug–cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug–cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)National Institute of Mental Health (U.S.) (grant T32-GM008334)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio

    Coronin 1B Coordinates Arp2/3 Complex and Cofilin Activities at the Leading Edge

    Get PDF
    Actin filament nucleation and turnover are interdependent processes in migrating cells, but the mechanisms coordinating these events are unknown. Coronin 1B influences motility, lamellipodial dynamics and actin filament architecture at the leading edge of Rat2 cells in a manner consistent with a role in coordinating filament formation and turnover. Coronin 1B interacts simultaneously with both Arp2/3 complex and Slingshot (SSH1L) phosphatase, two regulators of actin filament formation and turnover, respectively. Coronin 1B inhibits filament nucleation by Arp2/3 complex and this inhibition is attenuated by phosphorylation of Coronin 1B on Serine 2, a site targeted by SSH1L. Coronin 1B directs SSH1L to lamellipodia where it likely regulates Cofilin. Accordingly, depleting Coronin 1B increases phospho-Cofilin levels and expressing activated Cofilin partially suppresses the effects on lamellipodia dynamics of Coronin 1B depletion. Thus, Coronin 1B coordinates filament nucleation via Arp2/3 complex and turnover by Cofilin at the leading edge of migrating cells

    Further insights from structural mass spectrometry into endocytosis adaptor protein assemblies

    Get PDF
    As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Synthesis and characterisation of alpha-carboxynitrobenzyl photocaged l-aspartates for applications in time-resolved structural biology

    Get PDF
    We report a new synthetic route to a series of α-carboxynitrobenzyl photocaged ⌊-aspartates for application in time-resolved structural biology. The resulting compounds were characterised in terms of UV/Vis absorption properties, aqueous solubility and stability, and photocleavage rates (τ = μs to ms) and quantum yields (φ = 0.05 to 0.14)

    A data set from flash X-ray imaging of carboxysomes

    Get PDF
    Citation: Hantke, M. F., Hasse, D., Ekeberg, T., John, K., Svenda, M., Loh, D., . . . Maia, F. R. N. C. (2016). A data set from flash X-ray imaging of carboxysomes. Scientific Data, 3. doi:10.1038/sdata.2016.61Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere

    A data set from flash X-ray imaging of carboxysomes

    Get PDF
    Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere

    In vivo expression of innate immunity markers in patients with mycobacterium tuberculosis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs), Coronin-1 and Sp110 are essential factors for the containment of <it>Mycobacterium tuberculosis </it>infection. The purpose of this study was to investigate the <it>in vivo </it>expression of these molecules at different stages of the infection and uncover possible relationships between these markers and the state of the disease.</p> <p>Methods</p> <p>Twenty-two patients with active tuberculosis, 15 close contacts of subjects with latent disease, 17 close contacts of subjects negative for mycobacterium antigens and 10 healthy, unrelated to patients, subjects were studied. Quantitative mRNA expression of Coronin-1, Sp110, TLRs-1,-2,-4 and -6 was analysed in total blood cells <it>vs </it>an endogenous house-keeping gene.</p> <p>Results</p> <p>The mRNA expression of Coronin-1, Sp110 and TLR-2 was significantly higher in patients with active tuberculosis and subjects with latent disease compared to the uninfected ones. Positive linear correlation for the expression of those factors was only found in the infected populations.</p> <p>Conclusions</p> <p>Our results suggest that the up-regulation of Coronin-1 and Sp110, through a pathway that also includes TLR-2 up-regulation may be involved in the process of tuberculous infection in humans. However, further studies are needed, in order to elucidate whether the selective upregulation of these factors in the infected patients could serve as a specific molecular marker of tuberculosis.</p

    Differential Proteomic Analysis of Platelets Suggested Possible Signal Cascades Network in Platelets Treated with Salvianolic Acid B

    Get PDF
    Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear.In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca²+ and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets.Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca²+ level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets
    corecore