1,549 research outputs found

    Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction

    Get PDF
    Evaluation of the radioisotopic purity of technetium-99m (99mTc) produced in GBq amounts by proton bombardment of enriched molibdenum-100 (100Mo) metallic targets at low proton energies (i.e. within 15\u201320 MeV) is conducted. This energy range was chosen since it is easily achievable by many conventional medical cyclotrons already available in the nuclear medicine departments of hospitals. The main motivation for such a study is in the framework of the research activities at the international level that have been conducted over the last few years to develop alternative production routes for the most widespread radioisotope used in medical imaging. The analysis of technetium isotopes and isomeric states (9xTc) present in the pertechnetate saline Na99mTcO4 solutions, obtained after the extraction/purification procedure, reveals radionuclidic purity levels basically in compliance with the limits recently issued by European Pharmacopoeia 9.3 (2018 Sodium pertechnetate (99mTc) injection 4801\u20133). Moreover, the impact of 9xTc contaminant nuclides on the final image quality is thoroughly evaluated, analyzing the emitted high-energy gamma rays and their influence on the image quality. The spatial resolution of images from cyclotron-produced 99mTc acquired with a mini-gamma camera was determined and compared with that obtained using technetium-99m solutions eluted from standard 99Mo/99mTc generators. The effect of the increased image background contribution due to Compton-scattered higher-energy gamma rays (E \u3b3 \u2009\u2009>\u2009\u2009200\u2009keV), which could cause image-contrast deterioration, was also studied. It is concluded that, due to the high radionuclidic purity of cyclotron-produced 99mTc using 100Mo(p,2n)99mTc reaction at a proton beam energy in the range 15.7\u201319.4 MeV, the resulting image properties are well comparable with those from the generator-eluted 99mTc

    Field effect enhancement in buffered quantum nanowire networks

    Get PDF
    III-V semiconductor nanowires have shown great potential in various quantum transport experiments. However, realizing a scalable high-quality nanowire-based platform that could lead to quantum information applications has been challenging. Here, we study the potential of selective area growth by molecular beam epitaxy of InAs nanowire networks grown on GaAs-based buffer layers. The buffered geometry allows for substantial elastic strain relaxation and a strong enhancement of field effect mobility. We show that the networks possess strong spin-orbit interaction and long phase coherence lengths with a temperature dependence indicating ballistic transport. With these findings, and the compatibility of the growth method with hybrid epitaxy, we conclude that the material platform fulfills the requirements for a wide range of quantum experiments and applications

    Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires

    Get PDF
    We investigate the emission properties of excitons in GaAs nanowires containing quantum disks formed by structural alternation between the zinc-blende and wurtzite phases, by means of temperature-dependent photoluminescence. At 10 K the emission from an ensemble of disks is distributed in a band of full width at half maximum ∼30 meV, whereas the emission linewidth for a single disk is 700 μeV. While the disk ensemble emission exhibits an S-shaped temperature dependence, the emission from single quantum disks follows the temperature dependence of the band gap over the whole temperature range. This indicates that intradisk exciton localization on impurities is negligible and that increasing the temperature induces a transfer of excitons from narrow to thick disks along the length of the wires. Our observations of the emission linewidth for single crystal-phase quantum disks show a scattering rate of excitons with acoustic phonons eight times larger than the values usually reported for (Al,Ga)As/GaAs quantum wells. This large scattering rate demonstrates that the electron effective mass in wurtzite GaAs is much heavier than in zinc-blende GaAs and is evidence of coupling between the Γ7 and Γ8 conduction bands of wurtzite GaAs.We acknowledge financial support from the Poynton Cambridge Australia Scholarship and from the European Union Seventh Framework Program under grant agreement No. 265073. A.F.iM. and E.U. acknowledge funding through the Marie Curie Excellence grant SENFED. S.C.B. thanks S.N.F. for funding through the Marie-Heim Vögtlin scheme

    In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering

    Get PDF
    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono-and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell-biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts.This work was supported by the European Community's Seventh Framework Programme (FP7-HEALTH-2011) under grant agreement No. 278612. This work was also co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), ao abrigo do Quadro de Referencia Estrategico Nacional (QREN), and atraves do Fundo Europeu de Desenvolvimento Regional (FEDER). The authors gratefully acknowledge the delivery of the chitosan raw material by Altakitin S.A., Portugal, and the fabrication of chitosan films by Medovent GmbH, Germany

    The visibility of IQHE at sharp edges: Experimental proposals based on interactions and edge electrostatics

    Full text link
    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk QH regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the non-linear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, however still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under quantized Hall conditions.Comment: Substantially revised version of manuscript arXiv:0906.3796v1, including new figures et

    Creative and Stylistic Devices Employed by Children During a Storybook Narrative Task: A Cross-Cultural Study

    Get PDF
    Purpose: The purpose of this study was to analyze the effects of culture on the creative and stylistic features children employ when producing narratives based on wordless picture books. Method: Participants included 60 first- and second-grade African American, Latino American, and Caucasian children. A subset of narratives based on wordless picture books collected as part of a larger study was coded and analyzed for the following creative and stylistic conventions: organizational style (topic centered, linear, cyclical), dialogue (direct, indirect), reference to character relationships (nature, naming, conduct), embellishment (fantasy, suspense, conflict), and paralinguistic devices (expressive sounds, exclamatory utterances). Results: Many similarities and differences between ethnic groups were found. No significant differences were found between ethnic groups in organizational style or use of paralinguistic devices. African American children included more fantasy in their stories, Latino children named their characters more often, and Caucasian children made more references to the nature of character relationships. Conclusion: Even within the context of a highly structured narrative task based on wordless picture books, culture influences children’s production of narratives. Enhanced understanding of narrative structure, creativity, and style is necessary to provide ecologically valid narrative assessment and intervention for children from diverse cultural backgrounds

    Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model.

    Get PDF
    Demyelinating disorders such as leukodystrophies and multiple sclerosis are neurodegenerative diseases characterized by the progressive loss of myelin that may lead toward a chronic demyelination of the brain¿s white matter, impairing normal axonal conduction velocity and ultimately causing neurodegeneration. Current treatments modifying the pathological mechanisms are capable of ameliorating the disease; however, frequently, these therapies are not sufficient to repress the progressive demyelination into a chronic condition and permanent loss of function. To this end, we analyzed the effect that bone marrowderived mesenchymal stromal cell (BM-MSC) grafts exert in a chronically demyelinated mouse brain. As a result, oligodendrocyte progenitors were recruited surrounding the graft due to the expression of various trophic signals by the grafted MSCs. Although there was no significant reaction in the non-grafted side, in the grafted regions oligodendrocyte progenitors were detected. These progenitors were derived from the nearby tissue as well as from the neurogenic niches, including the subependymal zone and dentate gyrus. Once near the graft site, the cells matured to myelinating oligodendrocytes. Finally, electrophysiological studies demonstrated that axonal conduction velocity was significantly increased in the grafted side of the fimbria. In conclusion, we demonstrate here that in chronic demyelinated white matter, BM-MSC transplantation activates oligodendrocyte progenitors and induces remyelination in the tissue surrounding the stem cell graft
    corecore