396 research outputs found
A single intrinsic Josephson junction with double-sided fabrication technique
We make stacks of intrinsic Josephson junctions (IJJs) imbedded in the bulk
of very thin (~nm) single crystals.
By precisely controlling the etching depth during the double-sided fabrication
process, the stacks can be reproducibly tailor-made to be of any microscopic
height (), i.e. enclosing a specified number of IJJ (0-6),
including the important case of a single junction. We discuss reproducible
gap-like features in the current-voltage characteristics of the samples at high
bias.Comment: 3 pages, 4 figures, to be published in APL May. 2
Modelling of railway curve squeal including effects of wheel rotation
Railway vehicles negotiating tight curves may emit an intense high-pitch noise. The underlying mechanisms of this squeal noise are still a subject of research. Simulation models are complex since they have to consider the non-linear, transient and high-frequency interaction between wheel and rail. Often simplified models are used for wheel and rail to reduce computational effort, which involves the risk of oversimplifications. This paper focuses on the importance to include a rotating wheel instead of a stationary wheel in the simulation models. Two formulations for a rotating wheel are implemented in a previously published wheel/rail interaction model: a realistic model based on an Eulerian modal coordinate approach and a simplified model based on a rotating load and moving Green's functions. The simulation results for different friction coefficients and values of lateral creepage are compared with results obtained for the stationary wheel. Both approaches for the rotating wheel give almost identical results for the rolling speed considered. Furthermore, it can be concluded that a model of a stationary flexible wheel is sufficient to simulate curve squeal
Planar infall of CH3OH gas around Cepheus A HW2
Aims: In order to test the nature of an (accretion) disk in the vicinity of
Cepheus A HW2, we measured the three-dimensional velocity field of the CH3OH
maser spots, which are projected within 1000au of the HW2 object, with an
accuracy of the order of 0.1km/s. Methods: We made use of the European VLBI
Network (EVN) to image the 6.7GHz CH3OH maser emission towards Cepheus A HW2
with 4.5 milli-arcsecond resolution (3au). We observed at three epochs spaced
by one year between 2013 and 2015. During the last epoch, on mid-march 2015, we
benefited from the new deployed Sardinia Radio Telescope. Results: We show that
the CH3OH velocity vectors lie on a preferential plane for the gas motion with
only small deviations of 12+/-9 degrees away from the plane. This plane is
oriented at a position angle of 134 degrees east of north, and inclined by 26
degrees with the line-of-sight, closely matching the orientation of the
disk-like structure previously reported by Patel et al.(2005). Knowing the
orientation of the equatorial plane, we can reconstruct a face-on view of the
CH3OH gas kinematics onto the plane. CH3OH maser emission is detected within a
radius of 900au from HW2, and down to a radius of about 300au, the latter
coincident with the extent of the dust emission at 0.9mm. The velocity field is
dominated by an infall component of about 2km/s down to a radius of 300au,
where a rotational component of 4km/s becomes dominant. We discuss the nature
of this velocity field and the implications for the enclosed mass. Conclusions:
These findings bring direct support to the interpretation that the high-density
gas and dust emission, surrounding Cepheus A HW2, trace an accretion disk.Comment: 9 pages, 4 figures, 2 tables, accepted by Astronomy & Astrophysic
VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift
In this work we present new APEX/SEPIA Band-5 observations targeting the CO
() emission line of 24 Herschel-detected galaxies at .
Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission
Survey (VALES), we investigate the star formation efficiencies (SFEs =
SFR/) of galaxies at low redshift. We find the SFE of our sample
bridges the gap between normal star-forming galaxies and Ultra-Luminous
Infrared Galaxies (ULIRGs), which are thought to be triggered by different star
formation modes. Considering the as the SFR and the
ratio, our data show a continuous and smooth increment as a function of
infrared luminosity (or star formation rate) with a scatter about 0.5 dex,
instead of a steep jump with a bimodal behaviour. This result is due to the use
of a sample with a much larger range of sSFR/sSFR using LIRGs, with
luminosities covering the range between normal and ULIRGs. We conclude that the
main parameters controlling the scatter of the SFE in star-forming galaxies are
the systematic uncertainty of the conversion factor, the gas
fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA
Intermittent maser flare around the high mass young stellar object G353.273+0.641 I: data & overview
We have performed VLBI and single-dish monitoring of 22 GHz HO maser
emission from the high mass young stellar object G353.273+0.641 with VERA (VLBI
Exploration of Radio Astrometry) and Tomakamai 11-m radio telescope. Two maser
flares have been detected, separated almost two years. Frequent VLBI monitoring
has revealed that these flare activities have been accompanied by structural
change of the prominent shock front traced by H2O maser alignments. We have
detected only blue-shifted emissions and all maser features have been
distributed within very small area of 200 200 au in spite of
wide velocity range (> 100 km s). The light curve shows notably
intermittent variation and suggests that the HO masers in G353.273+0.641
are excited by episodic radio jet. The time-scale of \sim2 yr and
characteristic velocity of \sim500 km s also support this
interpretation. Two isolated velocity components of C50 (-53 \pm 7 km s)
and C70 (-73 \pm 7 km s) have shown synchronised linear acceleration of
the flux weighted V_{\rmn{LSR}} values (\sim-5 km s yr) during
the flare phase. This can be converted to the lower-limit momentum rate of 1.1
\times 10 M_{\sun} km s yr. Maser properties are quite
similar to that of IRAS 20126+4104 especially. This corroborates the previous
suggestion that G353.273+0.641 is a candidate of high mass protostellar object.
The possible pole-on geometry of disc-jet system can be suitable for direct
imaging of the accretion disc in this case.Comment: 13 pages, 5 figures accepted for publication in MNRA
Milliarcsecond structure of water maser emission in two young high-mass stellar objects associated with methanol masers
The 22.2 GHz water masers are often associated with the 6.7 GHz methanol
masers but owing to the different excitation conditions they likely probe
independent spatial and kinematic regions around the powering young massive
star. We compared the emission of these two maser species on milliarcsecond
scales to determine in which structures the masers arise and to test a
disc-outflow scenario where the methanol emission arises in a circumstellar
disc while the water emission comes from an outflow. We obtained high-angular
and spectral resolution 22.2 GHz water maser observations of the two sources
G31.581+00.077 and G33.641-00.228 using the EVN. In both objects the water
maser spots form complex and filamentary structures of sizes 18-160 AU. The
emission towards the source G31.581+00.077 comes from two distinct regions of
which one is related to the methanol maser source of ring-like shape. In both
targets the main axis of methanol distribution is orthogonal to the water maser
distribution. Most of water masers appear to trace shocks on a working surface
between an outflow/jet and a dense envelope. Some spots are possibly related to
the disc-wind interface which is as close as 100-150 AU to the regions of
methanol emission.Comment: 10 pages, accepted to Astronomy and Astrophysic
Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia
Background and aims:
Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L.
Methods:
We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method.
Results:
Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera.
Conclusions:
Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance
International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)
Background
Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment.
Methods and results
Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines).
Conclusions
The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world
SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium
The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. © 2017 ESO
- …
