766 research outputs found

    Frequency-dependent fitness induces multistability in coevolutionary dynamics

    Get PDF
    Evolution is simultaneously driven by a number of processes such as mutation, competition and random sampling. Understanding which of these processes is dominating the collective evolutionary dynamics in dependence on system properties is a fundamental aim of theoretical research. Recent works quantitatively studied coevolutionary dynamics of competing species with a focus on linearly frequency-dependent interactions, derived from a game-theoretic viewpoint. However, several aspects of evolutionary dynamics, e.g. limited resources, may induce effectively nonlinear frequency dependencies. Here we study the impact of nonlinear frequency dependence on evolutionary dynamics in a model class that covers linear frequency dependence as a special case. We focus on the simplest non-trivial setting of two genotypes and analyze the co-action of nonlinear frequency dependence with asymmetric mutation rates. We find that their co-action may induce novel metastable states as well as stochastic switching dynamics between them. Our results reveal how the different mechanisms of mutation, selection and genetic drift contribute to the dynamics and the emergence of metastable states, suggesting that multistability is a generic feature in systems with frequency-dependent fitness.Comment: 12 pages, 6 figures; J. R. Soc. Interface (2012

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Revealing Network Connectivity From Dynamics

    Full text link
    We present a method to infer network connectivity from collective dynamics in networks of synchronizing phase oscillators. We study the long-term stationary response to temporally constant driving. For a given driving condition, measuring the phase differences and the collective frequency reveals information about how the oscillators are interconnected. Sufficiently many repetitions for different driving conditions yield the entire network connectivity from measuring the dynamics only. For sparsely connected networks we obtain good predictions of the actual connectivity even for formally under-determined problems.Comment: 10 pages, 4 figure

    Counting Complex Disordered States by Efficient Pattern Matching: Chromatic Polynomials and Potts Partition Functions

    Full text link
    Counting problems, determining the number of possible states of a large system under certain constraints, play an important role in many areas of science. They naturally arise for complex disordered systems in physics and chemistry, in mathematical graph theory, and in computer science. Counting problems, however, are among the hardest problems to access computationally. Here, we suggest a novel method to access a benchmark counting problem, finding chromatic polynomials of graphs. We develop a vertex-oriented symbolic pattern matching algorithm that exploits the equivalence between the chromatic polynomial and the zero-temperature partition function of the Potts antiferromagnet on the same graph. Implementing this bottom-up algorithm using appropriate computer algebra, the new method outperforms standard top-down methods by several orders of magnitude, already for moderately sized graphs. As a first application, we compute chromatic polynomials of samples of the simple cubic lattice, for the first time computationally accessing three-dimensional lattices of physical relevance. The method offers straightforward generalizations to several other counting problems.Comment: 7 pages, 4 figure

    Unstable Attractors: Existence and Robustness in Networks of Oscillators With Delayed Pulse Coupling

    Full text link
    We consider unstable attractors; Milnor attractors AA such that, for some neighbourhood UU of AA, almost all initial conditions leave UU. Previous research strongly suggests that unstable attractors exist and even occur robustly (i.e. for open sets of parameter values) in a system modelling biological phenomena, namely in globally coupled oscillators with delayed pulse interactions. In the first part of this paper we give a rigorous definition of unstable attractors for general dynamical systems. We classify unstable attractors into two types, depending on whether or not there is a neighbourhood of the attractor that intersects the basin in a set of positive measure. We give examples of both types of unstable attractor; these examples have non-invertible dynamics that collapse certain open sets onto stable manifolds of saddle orbits. In the second part we give the first rigorous demonstration of existence and robust occurrence of unstable attractors in a network of oscillators with delayed pulse coupling. Although such systems are technically hybrid systems of delay differential equations with discontinuous `firing' events, we show that their dynamics reduces to a finite dimensional hybrid system system after a finite time and hence we can discuss Milnor attractors for this reduced finite dimensional system. We prove that for an open set of phase resetting functions there are saddle periodic orbits that are unstable attractors.Comment: 29 pages, 8 figures,submitted to Nonlinearit

    Breaking Synchrony by Heterogeneity in Complex Networks

    Full text link
    For networks of pulse-coupled oscillators with complex connectivity, we demonstrate that in the presence of coupling heterogeneity precisely timed periodic firing patterns replace the state of global synchrony that exists in homogenous networks only. With increasing disorder, these patterns persist until they reach a critical temporal extent that is of the order of the interaction delay. For stronger disorder these patterns cease to exist and only asynchronous, aperiodic states are observed. We derive self-consistency equations to predict the precise temporal structure of a pattern from the network heterogeneity. Moreover, we show how to design heterogenous coupling architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure

    Chaos in Symmetric Phase Oscillator Networks

    Get PDF
    Phase-coupled oscillators serve as paradigmatic models of networks of weakly interacting oscillatory units in physics and biology. The order parameter which quantifies synchronization was so far found to be chaotic only in systems with inhomogeneities. Here we show that even symmetric systems of identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order parameters. Our findings imply that neither inhomogeneities nor amplitude variations are necessary to obtain chaos, i.e., nonlinear interactions of phases give rise to the necessary instabilities.Comment: 4 pages; Accepted by Physical Review Letter

    Topological Speed Limits to Network Synchronization

    Full text link
    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and stays finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.Comment: 5 pages, 3 figure

    Modeling Multimodal Failure Effects of Complex Systems Using Polyweibull Distribution

    Get PDF
    The Department of Defense (DoD) enlists multiple complex systems across each of their departments. Between the aging systems going through an overhaul and emerging new systems, quality assurance to complete the mission and secure the nation‘s objectives is an absolute necessity. The U.S. Air Force‘s increased interest in Remotely Piloted Aircraft (RPA) and the Space Warfighting domain are current examples of complex systems that must maintain high reliability and sustainability in order to complete missions moving forward. DoD systems continue to grow in complexity with an increasing number of components and parts in more complex arrangements. Bathtub-shaped hazard functions arise from the existence of multiple competing failure modes which dominate at different periods in a systems lifecycle. The standard method for modeling the infant mortality, useful-life, and end-of-life wear-out failures depicted in a bathtub-curve is the Weibull distribution. However, this will only model one or the other, and not all three at once. The poly-Weibull distribution arises naturally in scenarios of competing risks as it describes the minimum of several independent random variables where each follows a distinct Weibull law. Little is currently known or has been developed for the poly-Weibull distribution. In this report, the poly-Weibull is compared against other goodness-of-fit models to model these completing multimodal failures. An equation to determine the moments for the poly-Weibull is derived leading to the development of properties such as the mean, variance, skewness, and kurtosis using Maximum Likelihood Estimation (MLE) parameters obtained from a data set with known bathtub shaped hazard function
    corecore