333 research outputs found
Method of making an apertured casting
An apertured casting is made by first forming a duplicate in the shape of the finished casting, positioning refractory metal bodies such as wires in the duplicate at points corresponding to apertures or passageways in finished products, forming a ceramic coating on the duplicate, removing the duplicate material, firing the ceramic in a vacuum or inert atmosphere, vacuum casting the metal in the ceramic form, removing the ceramic form, heating the cast object in an atmospheric furnace to oxidize the refractory metal bodies and then leaching the oxidized refractory bodies from the casting with a molten caustic agent or acid solution
Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S)
Acoustic Doppler velocity profiler (ADVP) measurements of instantaneous three-dimensional velocity profiles over the entire turbulent boundary layer height, δ, of rough-bed open-channel flows at moderate Reynolds numbers show the presence of large scale coherent shear stress structures (called LC3S herein) in the zones of uniformly retarded streamwise momentum. LC3S events over streamwise distances of several boundary layer thicknesses dominate the mean shear dynamics. Polymodal histograms of short streamwise velocity samples confirm the subdivision of uniform streamwise momentum into three zones also observed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, p. 1). The mean streamwise dimension of the zones varies between 1δ and 2.5δ. In the intermediate region (0.2<z/δ<0.75), the contribution of conditionally sampled u'w' events to the mean vertical turbulent kinetic energy (TKE) flux as a function of threshold level H is found to be generated by LC3S events above a critical threshold level Hmax for which the ascendant net momentum flux between LC3S of ejection and sweep types is maximal. The vertical profile of Hmax is nearly constant over the intermediate region, with a value of 5 independent of the flow conditions. Very good agreement is found for all flow conditions including the free-stream shear flows studied in Adrian et al. (2000). If normalized by the squared bed friction velocity, the ascendant net momentum flux containing 90% of the mean TKE flux is equal to 20% of the shear stress due to bed friction. In the intermediate region this value is nearly constant for all flow conditions investigated herein. It can be deduced that free-surface turbulence in open-channel flows originates from processes driven by LC3S, associated with the zonal organization of streamwise momentum. The good agreement with mean quadrant distribution results in the literature implies that LC3S identified in this study are common features in the outer region of shear flow
Spatial variability of bottom turbulence over a linear sand ridge mooring deployment and AUTOSUB AUV survey cruise report R/V RRS Challenger, cruise number 146 Broken Bank, North Sea, U.K., 17 – 28 August 1999 cruise report
Two successful AUTOSUB deployments were carried out during August 1999 as part of the AUTOSUB
Thematic Program project titled “Spatial Variability of Bottom Turbulence over a Linear Sand Ridge,” funded
by the Natural Environment Research Council (NERC), U.K. The AUTOSUB Autonomous Underwater Vehicle
(AUV) was deployed and used to survey flow patterns at a location near the Broken Bank, southern North Sea,
U.K. The AUV was equipped with acoustic flow and turbulence sensors and its surveys aimed at mapping the
spatial variation of flow and turbulence near the bed and over topographic features.
Three instrumented bottom mounted frames were also deployed, around the AUV survey area, for a period of
approximately 5 days. The purpose of this array was to gather information on the temporal variability of the flow
and turbulence near the seabed and to identify the important terms that drive circulation around the bank.
Additional data were gathered including CTD casts, seabed samples and acoustic images of the seabed (side-scan
sonar).
The purpose of this data collection was to help identify the flow patterns around ridges and to understand the
mechanisms controlling the maintenance and evolution of such features.
This report describes the operations carried out by researchers from the University of South Carolina, Woods
Hole Oceanographic Institution, Southampton Oceanography Centre and the AUTOSUB Team on the R.V. RRS
Challenger during the period 17th –28th August 1999.Funding was provided by the Office of Naval Research under Contract No. N00014-01-10255 and the Natural Environment Research Council, UK Award GST/02/2155 to the University of Southampton
Evidence of energy and momentum flux from swell to wind
Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2143-2156, doi:10.1175/JPO-D-15-0213.1.Measurements of pressure near the surface in conditions of wind sea and swell are reported. Swell, or waves that overrun the wind, produces an upward flux of energy and momentum from waves to the wind and corresponding attenuation of the swell waves. The estimates of growth of wind sea are consistent with existing parameterizations. The attenuation of swell in the field is considerably smaller than existing measurements in the laboratory
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems
Turbulent transport in the outer region of rough-wall open-channel flows : the contribution of large coherent shear stress structures (LC3S)
Author Posting. © Cambridge University Press, 2007. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 574 (2007): 465-493, doi:10.1017/S0022112006004216.Acoustic Doppler velocity profiler (ADVP) measurements of instantaneous three-dimensional velocity profiles over the entire turbulent boundary layer height, δ, of rough-bed open-channel flows at moderate Reynolds numbers show the presence of large scale coherent shear stress structures (called LC3S herein) in the zones of uniformly retarded streamwise momentum. LC3S events over streamwise distances of several boundary layer thicknesses dominate the mean shear dynamics. Polymodal histograms of short streamwise velocity samples confirm the subdivision of uniform streamwise momentum into three zones also observed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, p. 1). The mean streamwise dimension of the zones varies between 1δ and 2.5δ. In the intermediate region (0.2<z/δ<0.75), the contribution of conditionally sampled u'w' events to the mean vertical turbulent kinetic energy (TKE) flux as a function of threshold level H is found to be generated by LC3S events above a critical threshold level Hmax for which the ascendant net momentum flux between LC3S of ejection and sweep types is maximal. The vertical profile of Hmax is nearly constant over the intermediate region, with a value of 5 independent of the flow conditions. Very good agreement is found for all flow conditions including the free-stream shear flows studied in Adrian et al. (2000). If normalized by the squared bed friction velocity, the ascendant net momentum flux containing 90% of the mean TKE flux is equal to 20% of the shear stress due to bed friction. In the intermediate region this value is nearly constant for all flow conditions investigated herein. It can be deduced that free-surface turbulence in open-channel flows originates from processes driven by LC3S, associated with the zonal organization of streamwise momentum. The good agreement with mean quadrant distribution results in the literature implies that LC3S identified in this study are common features in the outer region of shear flows.The study was supported by the Swiss National Foundation for Scientific
Research for the experimental part (grant 2100 050739) and the French National
Center for Scientific Research (CNRS) for the data analysis and interpretation
A Plea for Risk
Mountaineering is a dangerous activity. For many mountaineers, part of its very attraction is the risk, the thrill of danger. Yet mountaineers are often regarded as reckless or even irresponsible for risking their lives. In this paper, we offer a defence of risk-taking in mountaineering. Our discussion is organised around the fact that mountaineers and non-mountaineers often disagree about how risky mountaineering really is. We hope to cast some light on the nature of this disagreement – and to argue that mountaineering may actually be worthwhile because of the risks it involves. Section 1 introduces the disagreement and, in doing so, separates out several different notions of risk. Sections 2–4 then consider some explanations of the disagreement, showing how a variety of phenomena can skew people’s risk judgements. Section 5 then surveys some recent statistics, to see whether these illuminate how risky mountaineering is. In light of these considerations, however, we suggest that the disagreement is best framed not simply in terms of how risky mountaineering is but whether the risks it does involve are justified. The remainder of the paper, sections 6–9, argues that risk-taking in mountaineering often is justified – and, moreover, that mountaineering can itself be justified (in part) by and because of the risks it involves
Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium
We calculate three-loop radiative-recoil corrections to hyperfine splitting
in muonium generated by the diagrams with the first order electron and muon
polarization loop insertions in graphs with two exchanged photons. These
corrections are enhanced by the large logarithm of the electron-muon mass
ratio. The leading logarithm squared contribution was obtained a long time ago.
Here we calculate the single-logarithmic and nonlogarithmic contributions. We
previously calculated the three-loop radiative-recoil corrections generated by
two-loop polarization insertions in the exchanged photons. The current paper
therefore concludes calculation of all three-loop radiative-recoil corrections
to hyperfine splitting in muonium generated by diagrams with closed fermion
loop insertions in the exchanged photons. The new results obtained here improve
the theory of hyperfine splitting, and affect the value of the electron-muon
mass ratio extracted from experimental data on the muonium hyperfine splitting.Comment: 27 pages, 6 figures, 7 table
Three-dimensional mapping of fluorescent dye using a scanning, depth-resolving airborne lidar
Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1050-1065, doi:10.1175/JTECH2027.1.Results are presented from a pilot study using a fluorescent dye tracer imaged by airborne lidar in the ocean surface layer on spatial scales of meters to kilometers and temporal scales of minutes to hours. The lidar used here employs a scanning, frequency-doubled Nd:YAG laser to emit an infrared (1064 nm) and green (532 nm) pulse 6 ns in duration at a rate of 1 kHz. The received signal is split to infrared, green, and fluorescent (nominally 580–600 nm) channels, the latter two of which are used to compute absolute dye concentration as a function of depth and horizontal position. Comparison of dye concentrations inferred from the lidar with in situ fluorometry measurements made by ship shows good agreement both qualitatively and quantitatively for absolute dye concentrations ranging from 1 to >10 ppb. Uncertainties associated with horizontal variations in the natural seawater attenuation are approximately 1 ppb. The results demonstrate the ability of airborne lidar to capture high-resolution three-dimensional “snapshots” of the distribution of the tracer as it evolves over very short time and space scales. Such measurements offer a powerful observational tool for studies of transport and mixing on these scales.Support was provided by the
Cecil H. and Ida M. Green Technology Innovation
Fund under Grant 27001545, the Office of Naval Research
Grant N00014-01-1-0984, and the Woods Hole
Oceanographic Institution Coastal Ocean Institute
Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 7584–7590, doi:10.1002/2014GL061637.Two near-surface dye releases were mapped on scales of minutes to hours temporally, meters to order 1 km horizontally, and 1–20 m vertically using a scanning, depth-resolving airborne lidar. In both cases, dye evolved into a series of rolls with their major axes approximately aligned with the wind and/or near-surface current. In both cases, roll spacing was also of order 5–10 times the mixed layer depth, considerably larger than the 1–2 aspect ratio expected for Langmuir cells. Numerical large-eddy simulations under similar forcing showed similar features, even without Stokes drift forcing. In one case, inertial shear driven by light winds induced large aspect ratio large-eddy circulation. In the second, a preexisting lateral mixed layer density gradient provided the dominant forcing. In both cases, the growth of the large-eddy structures and the strength of the resulting dispersion were highly dependent on the type of forcing.Support for the 2004 field experiment was provided by the Cecil H. and Ida M. Green Technology Innovation Fund and Coastal Ocean Institute grant 27001545, both through Woods Hole Oceanographic Institution, and by Office of Naval Research grant N00014-01-1-0984. Support for the 2011 field experiments was provided by ONR grants N00014-09-1-0194, N00014-09-1-0175, N00014-11-WX-21010, N00014-12-WX-21031, and N00014-09-1-0460 and NSF grants OCE-0751734 and OCE-0751653. Simulations were supported under grant N00014-09-1-0268.2015-05-0
- …