2,079 research outputs found

    A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence

    Get PDF
    RBC-transfusion dependence is common in persons with myeloproliferative neoplasm (MPN)-associated myelofibrosis. The objective of this study was to determine the rates of RBC-transfusion independence after therapy with pomalidomide vs placebo in persons with MPN-associated myelofibrosis and RBC-transfusion dependence. Two hundred and fifty-two subjects (intent-to-treat (ITT) population) including 229 subjects confirmed by central review (modified ITT population) were randomly assigned (2:1) to pomalidomide or placebo. Trialists and subjects were blinded to treatment allocation. Primary end point was proportion of subjects achieving RBC-transfusion independence within 6 months. One hundred and fifty-two subjects received pomalidomide and 77 placebo. Response rates were 16% (95% confidence interval (CI), 11, 23%) vs 16% (8, 26% P=0.87). Response in the pomalidomide cohort was associated with ⩽4 U RBC/28 days (odds ratio (OR)=3.1; 0.9, 11.1), age ⩽65 (OR=2.3; 0.9, 5.5) and type of MPN-associated myelofibrosis (OR=2.6; 0.7, 9.5). Responses in the placebo cohort were associated with ⩽4 U RBC/28 days (OR=8.6; 0.9, 82.3), white blood cell at randomization >25 × 10(9)/l (OR=4.9; 0.8, 28.9) and interval from diagnosis to randomization >2 years (OR=4.9; 1.1, 21.9). Pomalidomide was associated with increased rates of oedema and neutropenia but these adverse effects were manageable. Pomalidomide and placebo had similar RBC-transfusion-independence response rates in persons with MPN-associated RBC-transfusion dependence

    MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling.

    Get PDF
    Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, and the Leukemia and Lymphoma Society of America. WW is supported by the Austrian Science Foundation (J 3578-B21). JN is supported by a Kay Kendall Leukaemia Clinical Fellowship.This is the final published version. It first appeared at http://www.nature.com/leu/journal/vaop/ncurrent/full/leu2014285a.html

    Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients

    Get PDF
    We have previously identified sole +9, 13q- or 20q-, as ‘favorable' and sole +8 or complex karyotype as ‘unfavorable' cytogenetic abnormalities in primary myelofibrosis (PMF). In this study of 433 PMF patients, we describe additional sole abnormalities with favorable (chromosome 1 translocations/duplications) or unfavorable (−7/7q-) prognosis and also show that other sole or two abnormalities that do not include i(17q), −5/5q-, 12p-, inv(3) or 11q23 rearrangement are prognostically aligned with normal karyotype, which is prognostically favorable. These findings were incorporated into a refined two-tired cytogenetic-risk stratification: unfavorable and favorable karyotype. The respective 5-year survival rates were 8 and 51% (hazard ratio (HR): 3.1, 95% confidence interval (CI): 2.2–4.3; P<0.0001). Multivariable analysis confirmed the International Prognostic Scoring System (IPSS)-independent prognostic value of cytogenetic-risk categorization and also identified thrombocytopenia (platelets <100 × 109/l) as another independent predictor of inferior survival (P<0.0001). A similar multivariable analysis showed that karyotype (P=0.001) and platelet count (P=0.04), but not IPSS (P=0.27), predicted leukemia-free survival; the 5-year leukemic transformation rates for unfavorable versus favorable karyotype were 46 and 7% (HR: 5.5, 95% CI: 2.5–12.0; P<0.0001). This study provides the rationale and necessary details for incorporating cytogenetic findings and platelet count in future prognostic models for PMF

    Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts

    Get PDF
    A total of 410 patients with blast phase myeloproliferative neoplasm (MPN-BP) were retrospectively reviewed: 248 from the Mayo Clinic and 162 from Italy. Median survival was 3.6 months, with no improvement over the last 15 years. Multivariable analysis performed on the Mayo cohort identified high risk karyotype, platelet count < 100 × 109 /L, age > 65 years and transfusion need as independent risk factors for survival. Also in the Mayo cohort, intensive chemotherapy resulted in complete remission (CR) or CR with incomplete count recovery (CRi) rates of 35 and 24%, respectively; treatment-specified 3-year/5-year survival rates were 32/10% for patients receiving allogeneic stem cell transplant (AlloSCT) (n = 24), 19/13% for patients achieving CR/CRi but were not transplanted (n = 24), and 1/1% in the absence of both AlloSCT and CR/CRi (n = 200) (p < 0.01). The survival impact of AlloSCT (HR 0.2, 95% CI 0.1–0.3), CR/CRi without AlloSCT (HR 0.3, 95% CI 0.2–0.5), high risk karyotype (HR 1.6, 95% CI 1.1–2.2) and platelet count < 100 × 109 /L (HR 1.6, 95% CI 1.1–2.2) were confirmed to be interindependent. Similar observations were made in the Italian cohort. The current study identifies the setting for improved short-term survival in MPN-BP, but also highlights the limited value of current therapy, including AlloSCT, in securing long-term survival

    Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    Get PDF
    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM

    Germline and somatic JAK2 mutations and susceptibility to chronic myeloproliferative neoplasms

    Get PDF
    Myeloproliferative neoplasms (MPNs) are a group of closely related stem-cell-derived clonal proliferative diseases. Most cases are sporadic but first-degree relatives of MPN patients have a five- to seven-fold increased risk for developing an MPN. The tumors of most patients carry a mutation in the Janus kinase 2 gene (JAK2V617F). Recently, three groups have described a strong association of JAK2 germline polymorphisms with MPN in patients positive for JAK2V617F. The somatic mutation occurs primarily on one particular germline JAK2 haplotype, which may account for as much as 50% of the risk to first-degree relatives. This finding provides new directions for unraveling the pathogenesis of MPN
    corecore