1,021 research outputs found

    High-Pressure Amorphous Nitrogen

    Full text link
    The phase diagram and stability limits of diatomic solid nitrogen have been explored in a wide pressure--temperature range by several optical spectroscopic techniques. A newly characterized narrow-gap semiconducting phase Ī·\eta has been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational and optical properties of the Ī·\eta phase produced under these conditions indicate that it is largely amorphous and back transforms to a new molecular phase. The band gap of the Ī·\eta phase is found to decrease with pressure indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure

    Beitrag zum Problem der heterosynaptischen Facilitation in Aplysia californica

    Full text link
    1. Heterosynaptic facilitation (H.S.F.) of single neurons in the central nervous system of Aplysia can be repeated virtually indefinitely, provided sufficient time is allowed for recovery between the trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47439/1/424_2004_Article_BF00362956.pd

    High temperature optical absorption investigation into the electronic transitions in solā€“gel derived C12A7 thin films

    Get PDF
    Optical absorption into 6Ā mm thick solā€“gel derived films, annealed at 1300Ā Ā°C of 12CaOĀ·7Al2O3 calcium aluminate binary compound on MgO怈100怉 single crystal substrates was studied at temperatures ranging from room temperature to 300Ā Ā°C. Experimental data were analysed in both Tauc and Urbach regions. The optical band gap decreased from 4.088Ā eV at 25Ā Ā°C to 4.051Ā eV at 300Ā Ā°C, while Urbach energy increased from 0.191Ā eV at 25Ā Ā°C to 0.257Ā eV at 300Ā Ā°C. The relationship between the optical band gap and the Urbach energy at different temperatures showed an almost linear relationship from which the theoretical values of 4.156 and 0.065Ā eV were evaluated for the band gap energy and Urbach energy of a 12CaOĀ·7Al2O3 crystal with zero structural disorder at 0Ā K

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table

    Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics

    Get PDF
    Silicon nanocrystals with an average size of approximately 4 nm dispersed in SiO2/Si3N4 hybrid matrix have been synthesised by magnetron sputtering followed by a high-temperature anneal. To gain understanding of the photon absorption and emission mechanisms of this material, several samples are characterised optically via spectroscopy and photoluminescence measurements. The values of optical band gap are extracted from interference-minimised absorption and luminescence spectra. Measurement results suggest that these nanocrystals exhibit transitions of both direct and indirect types. Possible mechanisms of absorption and emission as well as an estimation of exciton binding energy are also discussed

    Effect of iodine incorporation on characteristic properties of cadmium telluride deposited in aqueous solution

    Get PDF
    The electrodeposition of polycrystalline I-doped CdTe was successfully performed from aqueous solutions containing cadmium nitrate (Cd(NO3)2 and tellurium oxide (TeO2). The effects of different I-doping concentrations in the electrolytic bath on the deposited CdTe layers deposited were evaluated structurally, optically, morphologically and electronically using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current (DC) conductivity test respectively. The XRD show reduction in the (111) cubic CdTe peak intensity and the calculated crystallite size of the CdTe:I layers above 5 ppm I-doping. At I-doping of 1000 ppm of the CdTe-bath and above, the deposition of only crystalline Te due to the formation of Cd-I complexes debarring the deposition of Cd and co-deposition of CdTe in aqueous solution was observed. Morphologically, reductions in grain size were observed above 5 ppm I-doping with high pinhole density and the formation of cracks within the CdTe:I layers. For the as-deposited CdTe:I layers, conduction type remained n-type across all the explored I-doping concentration of 200 ppm. For the CdCl2 and Ga2(SO4)2+CdCl2 treated CdTe:I layers, the transition from n- to p-type conductivity was observed for the CdTe:I baths doped with 20 ppm and above due to the reduced cadmium deposition on the substrate. The highest conductivity was observed at 5 ppm I-doping of the CdTe-bath. Observations made on the CdTe:I in aqueous solution differs from the non-aqueous solvent documented in the literature. These results are reported systematically in this communication

    Synthesis and characterization of single phase Mn doped ZnO

    Full text link
    Different samples of Zn1-xMnxO series have been prepared by conventional solid state sintering method. It has been identified, up to what extent of doping enable us to synthesize single-phase polycrystalline Mn doped ZnO samples which is one of the prerequisite for dilute magnetic semiconductor and we have analyzed its certain other physical aspects. In synthesizing the samples proportion of Mn varies from 1 at% to 5 at%. However the milling times have been varied (6, 12, 24, 48 & 96 hours) for only 2 at% Mn doped samples while for other samples (1, 3, 4 & 5 at% Mn doped) the milling time has been kept fixed at 96 hours. Room temperature X-Ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, no segregation of Mn and/or its oxides has been found. The 4 at% Mn doped samples show a weak peak of ZnMn2O4 apart from usual other peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping single-phase behavior is destroyed. Band gap for all the 2 at% Mn doped samples have been estimated as between 3.21 to 3.19 eV and reason for this low band gap values has been explained through the grain boundary trapping model. The room temperature resistivity measurement shows increase of resistivity up to 48 hours of milling and with further milling it saturates. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau 1), at defect site (tau 2) and average (tau av) increases with milling time.Comment: 26 pages, 7 figures; Submitted to Physica B after minor correctio

    MgyNi1-y(Hx) thin films deposited by magnetron co-sputtering

    Get PDF
    In this work we have synthesised thin films of MgyNi1-y(Hx) metal and metal hydride with y between 0 and 1. The films are deposited by magnetron co-sputtering of metallic targets of Mg and Ni. Metallic MgyNi1-y films were deposited with pure Ar plasma while MgyNi1-yHx hydride films were deposited reactively with 30% H2 in the Ar plasma. The depositions were done with a fixed substrate carrier, producing films with a spatial gradient in the Mg and Ni composition. The combinatorial method of co-sputtering gives an insight into the phase diagram of MgyNi1-y and MgyNi1-yHx, and allows us to investigate structural, optical and electrical properties of the resulting alloys. Our results show that reactive sputtering gives direct deposition of metal hydride films, with high purity in the case of Mg~2NiH~4. We have observed limited oxidation after several months of exposure to ambient conditions. MgyNi1-y and MgyNi1-yHx films might be applied for optical control in smart windows, optical sensors and as a semiconducting material for photovoltaic solar cells

    Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells

    Get PDF
    The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 treatment as compared to other pH values explored
    • ā€¦
    corecore