234 research outputs found

    Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    Get PDF
    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds

    Task 10: Research an Alternative Instructional Design Model

    Get PDF
    Under authority of the Federal Aviation Administration (FAA), the Center of Excellence (COE) Technical Training Human Performance (TTHP) Task 10 research team has prepared a comprehensive technical report and an executive summary for the Air Traffic Organization (ATO) concerning the instructional development (ID) of occupational education and training for Air Traffic (AT) controllers and Technical Operations (TO) technicians. Research included: • Front-end analysis of available FAA courses and government furnished information (GFI), including course-development documentation and associated guidance, policies, and regulations. • Structured and semi-structured data-gathering techniques in cooperation with Instructional Systems Specialists (ISS), ISS Managers, and Requirements personnel. • Informal observations of validation events for Air Traffic training. • Analysis of the relevant literature from academic, government, and industry domains. The executive summary describes the findings and observations of issues directly related to the ID process and potential solutions based on findings from this comparative analysis. The comprehensive report that follows includes these and additional observations and recommendations as well as the project overview, an introduction to best practice research, the research methodology, presentation and analysis of the results, and discussion of the findings and conclusions

    Dermal Lymphatic Capillaries Do Not Obey Murray's Law

    Get PDF
    Lymphatic vessels serve as a major conduit for the transport of interstitial fluid, immune cells, lipids and drugs. Therefore, increased knowledge about their development and function is relevant to clinical issues ranging from chronic inflammation and edema, to cancer metastasis to targeted drug delivery. Murray's Law is a widely-applied branching rule upheld in diverse circulatory systems including leaf venation, sponge canals, and various human organs for optimal fluid transport. Considering the unique and diverse functions of lymphatic fluid transport, we specifically address the branching of developing lymphatic capillaries, and the flow of lymph through these vessels. Using an empirically-generated dataset from wild type and genetic lymphatic insufficiency mouse models we confirmed that branching blood capillaries consistently follow Murray's Law. However surprisingly, we found that the optimization law for lymphatic vessels follows a different pattern, namely a Murray's Law exponent of ~1.45. In this case, the daughter vessels are smaller relative to the parent than would be predicted by the hypothesized radius-cubed law for impermeable vessels. By implementing a computational fluid dynamics model, we further examined the extent to which the assumptions of Murray's Law were violated. We found that the flow profiles were predominantly parabolic and reasonably followed the assumptions of Murray's Law. These data suggest an alternate hypothesis for optimization of the branching structure of the lymphatic system, which may have bearing on the unique physiological functions of lymphatics compared to the blood vascular system. Thus, it may be the case that the lymphatic branching structure is optimized to enhance lymph mixing, particle exchange, or immune cell transport, which are particularly germane to the use of lymphatics as drug delivery routes

    Measuring Dissociation Rate Constants of Protein Complexes through Subunit Exchange: Experimental Design and Theoretical Modeling

    Get PDF
    Protein complexes are dynamic macromolecules that constantly dissociate into, and simultaneously are assembled from, free subunits. Dissociation rate constants, koff, provide structural and functional information on protein complexes. However, because all existing methods for measuring koff require high-quality purification and specific modifications of protein complexes, dissociation kinetics has only been studied for a small set of model complexes. Here, we propose a new method, called Metabolically-labeled Affinity-tagged Subunit Exchange (MASE), to measure koff using metabolic stable isotope labeling, affinity purification and mass spectrometry. MASE is based on a subunit exchange process between an unlabeled affinity-tagged variant and a metabolically-labeled untagged variant of a complex. The subunit exchange process was modeled theoretically for a heterodimeric complex. The results showed that koff determines, and hence can be estimated from, the observed rate of subunit exchange. This study provided the theoretical foundation for future experiments that can validate and apply the MASE method

    Risk for Severe Group A Streptococcal Disease among Patients’ Household Contacts

    Get PDF
    From January 1997 to April 1999, we determined attack rates for cases of invasive group A streptococcal (GAS) disease in household contacts of index patients using data from Active Bacterial Core Surveillance sites. Of 680 eligible index-patient households, 525 (77.2%) were enrolled in surveillance. Of 1,514 household contacts surveyed, 127 (8.4%) sought medical care, 24 (1.6%) required hospital care, and none died during the 30-day reference period. One confirmed GAS case in a household contact was reported (attack rate, 66.1/100,000 household contacts). One household contact had severe GAS-compatible illness without confirmed etiology. Our study suggests that subsequent cases of invasive GAS disease can occur, albeit rarely. The risk estimate from this study is important for developing recommendations on the use of chemoprophylaxis for household contacts of persons with invasive GAS disease

    Invasion of Ureaplasma diversum in bovine spermatozoids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ureaplasma diversum </it>has been associated with infertility in cows. In bulls, this mollicute colonizes the prepuce and distal portion of the urethra and may infect sperm cells. The aim of this study is to analyze <it>in vitro </it>interaction of <it>U. diversum </it>isolates and ATCC strains with bovine spermatozoids. The interactions were observed by confocal microscopy and the gentamycin internalization assay.</p> <p>Findings</p> <p><it>U. diversum </it>were able to adhere to and invade spermatozoids after 30 min of infection. The gentamicin resistance assay confirmed the intracellularity and survival of <it>U. diversum </it>in bovine spermatozoids.</p> <p>Conclusions</p> <p>The intracellular nature of bovine ureaplasma identifies a new difficulty to control the reproductive of these animals.</p

    Machine learning-based prediction of breast cancer growth rate in-vivo

    Get PDF
    BackgroundDetermining the rate of breast cancer (BC) growth in vivo, which can predict prognosis, has remained elusive despite its relevance for treatment, screening recommendations and medicolegal practice. We developed a model that predicts the rate of in vivo tumour growth using a unique study cohort of BC patients who had two serial mammograms wherein the tumour, visible in the diagnostic mammogram, was missed in the first screen.MethodsA serial mammography-derived in vivo growth rate (SM-INVIGOR) index was developed using tumour volumes from two serial mammograms and time interval between measurements. We then developed a machine learning-based surrogate model called Surr-INVIGOR using routinely assessed biomarkers to predict in vivo rate of tumour growth and extend the utility of this approach to a larger patient population. Surr-INVIGOR was validated using an independent cohort.ResultsSM-INVIGOR stratified discovery cohort patients into fast-growing versus slow-growing tumour subgroups, wherein patients with fast-growing tumours experienced poorer BC-specific survival. Our clinically relevant Surr-INVIGOR stratified tumours in the discovery cohort and was concordant with SM-INVIGOR. In the validation cohort, Surr-INVIGOR uncovered significant survival differences between patients with fast-growing and slow-growing tumours.ConclusionOur Surr-INVIGOR model predicts in vivo BC growth rate during the pre-diagnostic stage and offers several useful applications
    corecore