148 research outputs found

    Velocity Field Statistics in Star-Forming Regions. I. Centroid Velocity Observations

    Full text link
    The probability density functions (pdfs) of molecular line centroid velocity fluctuations and fluctuation differences at different spatial lags are estimated for several nearby molecular clouds with active internal star formation. The data consist of over 75,000 13^{13}CO line profiles divided among twelve spatially and/or kinematically distinct regions. Although three regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly with power law contributions in the far tails. Evidence for nearly exponential centroid pdfs in the neutral HI component of the ISM is also presented, based on older optical and radio observations. These results are in contrast to pdfs found in isotropic incompressible turbulence experiments and simulations. Furthermore, no evidence is found for the scaling of difference pdf kurtosis with Reynolds number which is seen in incompressible turbulence, and the spatial distribution of high-amplitude velocity differences shows little indication of the filamentary appearance predicted by decay simulations dominated by vortical interactions. The variation with lag of the difference pdf moments is presented as a constraint on future simulations.Comment: LaTeX, 23 pages, with 15 Figures included separately as gif image files. Refereed/revised version accepted to the Astrophysical Journal. A complete (but much larger) postscript version is available from http://ktaadn.gsfc.nasa.gov/~miesc

    A Uniform CO Survey of the Molecular Clouds in Orion and Monoceros

    Full text link
    We report the results of a new large scale survey of the Orion-Monoceros complex of molecular clouds made in the J = 1->0 line of CO with the Harvard-Smithsonian 1.2m millimetre-wave telescope. The survey consists of 52,288 uniformly spaced spectra that cover an area of 432 square degrees on the sky and is the most sensitive large-scale survey of the region to date. Distances to the constituent molecular clouds of the complex, estimated from an analysis of foreground and background stars, have provided information on the three dimensional structure of the entire complex.Comment: Accepted for publication in Astronomy and Astrophysics. 19 pages with 17 colour figures - 39 if you count the sub-figures separately. The figures here have been bit-mapped with some loss of quality and beauty. The paper version in A&A will be in greyscale with the on-line version in colour. In the meantime the colour version can be obtained by following links at http://www.star.bris.ac.uk/mrwm . The 9MB PostScript is recommended if you have appropriate bandwidth or otherwise the 2.3MB PDF is usabl

    Astrophysical turbulence modeling

    Full text link
    The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic

    Time-Distance Helioseismology of Deep Meridional Circulation

    Full text link
    A key component of solar interior dynamics is the meridional circulation (MC), whose poleward component in the surface layers has been well observed. Time-distance helioseismic studies of the deep structure of MC, however, have yielded conflicting inferences. Here, following a summary of existing results we show how a large center-to-limb systematics (CLS) in the measured travel times of acoustic waves affect the inferences through an analysis of frequency dependence of CLS, using data from the Helioseismic and Doppler Imager (HMI) onboard Solar Dynamics Observatory (SDO). Our results point to the residual systematics in travel times as a major cause of differing inferences on the deep structure of MC.Comment: 6 pages, 3 figures, to appear in the Springer series Astrophysics and Space Science Proceedings of "Dynamics of the Sun & Stars: Honoring the Life & Work of Michael Thompson" (2020

    Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations

    Get PDF
    Forced turbulence simulations are used to determine the turbulent kinematic viscosity, nu_t, from the decay rate of a large scale velocity field. Likewise, the turbulent magnetic diffusivity, eta_t, is determined from the decay of a large scale magnetic field. In the kinematic regime, when the field is weak, the turbulent magnetic Prandtl number, nu_t/eta_t, is about unity. When the field is nonhelical, eta_t is quenched when magnetic and kinetic energies become comparable. For helical fields the quenching is stronger and can be described by a dynamical quenching formula.Comment: 7 pages, 6 figure

    Seismic Monitoring of the Sun's Far Hemisphere: A Crucial Component in Future Space Weather Forecasting (A White Paper Submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) -- SSPH 2024-2033)

    Full text link
    The purpose of this white paper is to put together a coherent vision for the role of helioseismic monitoring of magnetic activity in the Sun's far hemisphere that will contribute to improving space weather forecasting as well as fundamental research in the coming decade. Our goal fits into the broader context of helioseismology in solar research for any number of endeavors when helioseismic monitors may be the sole synoptic view of the Sun's far hemisphere. It is intended to foster a growing understanding of solar activity, as realistically monitored in both hemispheres, and its relationship to all known aspects of the near-Earth and terrestrial environment. Some of the questions and goals that can be fruitfully pursued through seismic monitoring of farside solar activity in the coming decade include: What is the relationship between helioseismic signatures and their associated magnetic configurations, and how is this relationship connected to the solar EUV irradiance over the period of a solar rotation?; How can helioseismic monitoring contribute to data-driven global magnetic-field models for precise space weather forecasting?; What can helioseismic monitors tell us about prospects of a flare, CME or high-speed stream that impacts the terrestrial environment over the period of a solar rotation?; How does the inclusion of farside information contribute to forecasts of interplanetary space weather and the environments to be encountered by human crews in interplanetary space? Thus, it is crucial for the development of farside monitoring of the Sun be continued into the next decade either through ground-based or space-borne observations

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Statistical Properties of Turbulence: An Overview

    Get PDF
    We present an introductory overview of several challenging problems in the statistical characterisation of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.Comment: 34 pages, 31 figure
    corecore