47 research outputs found

    Expression of chemokines and their receptors by human brain endothelium: Implications for multiple sclerosis

    Get PDF
    Leukocyte migration into the CNS is mediated by chemokines, expressed on the surface of brain endothelium. This study investigated the production of chemokines and expression of chemokine receptors by human brain endothelial cells (HBEC), in vitro and in situ in multiple sclerosis tissue. Four chemokines (CCL2, CCL5, CXCL8 and CXCL10), were demonstrated in endothelial cells in situ, which was reflected in the chemokine production by primary HBEC and a brain endothelial cell line, hCEMC/D3. CXCL8 and CCL2 were constitutively released and increased in response to TNF and/or IFN . CXCL10 and CCL5 were undetectable in resting cells but were secreted in response to these cytokines. TNF strongly increased the production of CCL2, CCL5 and CXCL8, while IFN up-regulated CXCL10 exclusively. CCL3 was not secreted by HBECs and appeared to be confined to astrocytes in situ. The chemokine receptors CXCR1 and CXCR3 were expressed by HBEC both in vitro and in situ, and CXCR3 was up-regulated in response to cytokine stimulation in vitro. By contrast, CXCR3 expression was reduced in silent MS lesions. Brain endothelium expresses particularly high levels of CXCL10 and CXCL8, which may account for the predominant TH1-type inflammatory reaction seen in chronic conditions such as multiple sclerosis

    New insights into the 21 November 2000 tsunami in west Greenland from analyses of the tree-ring structure of Salix glauca

    Get PDF
    We test the application of dendrochronological methods for dating and assessing the environmental impacts of tsunamis in polar regions, using an example of the 21 Novem− ber 2000 landslide−generated tsunami in Vaigat Strait (Sullorsuaq Strait), West Greenland. The studied tsunami inundated a c. 130 m−wide coastal plain with seawater, caused erosion of beaches and top soil and covered the area with an up to 35 cm−thick layer of tsunami de− posits composed of sand and gravel. Samples of living shrub, Salix glauca (greyleaf wil− low) were collected in 2012 from tsunami−flooded and non−flooded sites. The tree−ring analyses reveal unambiguously that the tsunami−impacted area was immediately colonized during the following summer by rapidly growing shrubs, whilst one of our control site spec− imens records evidence for damage that dates to the time of the tsunami. This demonstrates the potential for dendrochronological methods to act as a precise tool for the dating of Arc− tic paleotsunamis, as well as rapid post−tsunami ecosystem recovery. The reference site shrubs were likely damaged by solifluction in the autumn 2000 AD that was triggered by high seasonal rainfall, which was itself a probable contributory factor to the tsunami−gener− ating landslide

    Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard

    No full text
    Summary: Tidewater glaciers supply large amounts of suspended particulate matter (SPM) and freshwater to fjords and affect oceanographic, sedimentological and biological processes. Our understanding of these processes, is usually limited to the short summer season. Here, we present the results of a one-year-long monitoring of the spatial variability in SPM characteristics in a context of oceanographic and meteorological conditions of a glacial bay next to Hansbreen, a tidewater glacier in Hornsund (southern Spitsbergen). The observed range of SPM concentrations was similar to ranges measured in other sub-polar glaciated fjords, especially in Svalbard. The major source of SPM is the meltwater discharge from the glacier. The maximum water column-averaged SPM concentrations did not correlate with peaks in freshwater discharge and were observed at the beginning of the autumn season, when the fjord water transitioned from stratified to fully mixed. The observed spatiotemporal variations in the total SPM, particulate organic matter (POM) and particulate inorganic matter (PIM) are likely controlled by a combination of factors including freshwater supply, water stratification and circulation, bathymetry, the presence of sea ice, biological productivity and sediment resuspension. During the ablation season, the SPM maximum concentrations were located within the upper water layer, whereas during the winter and spring, the greatest amounts of SPM were concentrated in deeper part. Thus, typical remote sensing-based studies that focus on SPM distributions may not reflect the real SPM levels. POM and PIM concentrations were correlated with each other, during most of the time suggesting that they may have a common source. Keywords: Seasonality, Suspended particulate matter, Particulate organic matter, Tidewater glacier, Fjord, Svalbar

    Publicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the mediterranean – response to ‘tsunamis in the geological record: Making waves with a cautionary tale from the mediterranean’ by marriner et al. (2017)

    No full text
    This article is a response to the publication by Nick Marriner, David Kaniewski, Christophe Morhange, ClĂ©ment Flaux, Matthieu Giaime, Matteo Vacchi and James Goff entitled “Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean”, published in October 2017 in Science Advances. Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better ascribed to periods of heightened storminess”. In this response, we show that (i) the comparison of statistical data describing storm and tsunami events presented by Marriner et al. (2017) is incorrect both from a geographical and a statistical point of view, (ii) the assumed periods of central Mediterranean storminess published by Kaniewski et al. (2016) are missing convincing geological and geochronological evidence and are statistically incorrect, (iii) the palaeotsunami data that was originally collected by different groups of authors were manipulated by Marriner et al. (2017) in a way that the resulting data set – used as a benchmark for the entire study of these authors – is wrong and inaccurate, and that (iv) Marriner et al. (2017) did not address or even negate the original sedimentological studies’ presentation of comparative tsunami versus storm deposits for the selected individual localities. Based on a thorough and detailed evaluation of the geoscientific background and the methodological approach of the studies by Kaniewski et al. (2016) and Marriner et al. (2017), we conclude that there is no serious and reliable geoscientific evidence for increased storminess in the (central) Mediterranean Sea between 3400–2550, 2000–1800, 1650–1450, 1300–900 and 400–100 cal BP. The impact of those storms in the Mediterranean, producing geological traces somewhat comparable to those caused by tsunamis, is insignificantly small. For the period 1902–2017, Mediterranean tsunamis make up 73–98 % of all combined extreme wave events (EWE) leading to coastal flooding and appeared up to 181 times deadlier than comparable storm effects. This is the reason why coastal Mediterranean research has focused on Holocene records of the tsunami hazard, while research on comparable storm effects is of lower signifi-cance. The validity of geological evidence for Mediterranean EWE and their interpretation as caused by palaeotsunami impacts thus remains untouched. Tsunamis, in most cases directly and indirectly induced by seismo-tectonics, have always been a much greater threat to Mediterranean coastal regions than comparable storm effects. ‘Tsunami megacycles’ as expressions of a 1500-year periodicity centered on the Little Ice Age, 1600 and 3100 cal BP that were correlated with questionable storm data do not exist. Cause and effect relationships work the other way round: Major tsunami events, testified by historical accounts, such as those that occurred in 1908 AD, 1755 AD, 1693 AD and 365 AD, induced numerous studies along Mediterranean coasts. These investigations resulted in a large number of publications that specifically focus on those time periods, suspected by Marriner et al. (2017) to bear signs of increased storminess, namely 200–300 BP and 1600 BP. The Mediterranean tsunami record cannot be ascribed to periods of increased storminess. On the contrary, the tsunami record as interpreted by the authors of the original papers cited by Marriner et al. (2017), is due to the outstandingly high seismo-tectonic activity of the region. Mediterranean tsunamis are mostly triggered by earthquakes or by earthquake-related secondary effects such as underwater mass movements. The study by Marriner et al. (2017) is also problematic because it includes simple basic statistical mistakes and major methodological inconsistencies. The geomorphological and sedimentary background of EWE deposits was not taken into account. The ‘broad brush’ approach used by Marriner et al. (2017) to sweep sedimentary deposits from tsunami origin into the storm bag origin, just on the basis of (false) statistics coupled with very broad and unreliable palaeoclimatic indicators and time frames, is misleading. The distortion of original data collected and interpreted by other research groups by Marriner et al. (2017) is particularly disturbing. Their publication is also bound to question in this case the effectiveness of scientific quality assurance in modern publishing commerce. Marriner et al. (2017: 7) talk down the considerable risk to human settlements and infrastructure along Mediterranean coasts in relation to tsunami and earthquake hazards. Their conclusion is not only wrong as a result of their incorrect data mining and analyses, it is also irresponsible with regard to national and international efforts of tsunami and earthquake risk mitigation
    corecore