36 research outputs found

    Catch crop strategy and nitrate leaching following grazed grass-clover

    Get PDF
    Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0,60 or 120 kg of ammonium-N ha-1 in cattle slurry. In spring 2003, two grass-clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley⁄perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley⁄Italian ryegrass reduced leaching by 163–320 kg Nha-1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg Nha-1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catchcrops was reduced compared with the bare soil treatment. It was concluded that the green barley⁄Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers

    A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells

    Get PDF
    Purpose Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance. Methods Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay. Results CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide. Conclusion Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents

    Pharmacological Effects of Asiatic acid in Glioblastoma Cells under Hypoxia

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide (TMZ) and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood brain barrier (BBB), novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2hrs of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma
    corecore