189 research outputs found

    Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program

    Get PDF
    The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample

    Blade loss transient dynamics analysis, volume 2. Task 2: Theoretical and analytical development. Task 3: Experimental verification

    Get PDF
    The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described

    The Proposed Northern Pass Transmission LIne and the Power of Public Opinion

    Get PDF
    The proposed Northern Pass Project is a 187-mile high voltage direct current (HVDC) transmission line that would carry up to 1,200 megawatts (MW) of electricity across the Canadian border through the state of New Hampshire. This energy will be generated from hydroelectric power from Hydro-Quebec. I will focus this research on the public scoping period in the Department of Energy’s Environmental Impact Statement development from November 11, 2010 to December 2013. There are over 7,700 total comments, and I have collected a sample of 506 comments that I have analyzed based on content and geography. The Northern Pass Project incorporates energy policy and public participation as it relates to the environmental decision-making process

    Co-design of a controller and its digital implementation: the MOBY-DIC2 toolbox for embedded model predictive control

    Get PDF
    Several software tools are available in the literature for the design and embedded implementation of linear model predictive control (MPC), both in its implicit and explicit (either exact or approximate) forms. Most of them generate C code for easy implementation on a microcontroller, and the others can convert the C code into hardware description language code for implementation on a field programmable gate array (FPGA). However, a unified tool allowing one to generate efficient embedded MPC for an FPGA, starting from the definition of the plant and its constraints, was still missing. The MOBY-DIC2 toolbox described in this brief bridges this gap. To illustrate its functionalities, the tool is exploited to embed the controller and observer for a real buck power converter in an FPGA. This implementation achieves a latency of about 30 µs with the implicit controller and 240 μs with the approximate explicit controller

    Monitoring brain activity with protein voltage and calcium sensors

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 10212, doi:10.1038/srep10212.Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.Supported by US NIH DC005259, WCI 2009-003 from the National Research Foundation of Korea, a James Hudson Brown – Alexander Brown Coxe fellowship from Yale University, and a Ruth L. Kirschstein National Research Service Award DC012981

    Integration of magnetic bearings in the design of advanced gas turbine engines

    Get PDF
    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines

    Maxwell-Chern-Simons Theory With Boundary

    Full text link
    The Maxwell-Chern-Simons (MCS) theory with planar boundary is considered. The boundary is introduced according to Symanzik's basic principles of locality and separability. A method of investigation is proposed, which, avoiding the straight computation of correlators, is appealing for situations where the computation of propagators, modified by the boundary, becomes quite complex. For MCS theory, the outcome is that a unique solution exists, in the form of chiral conserved currents, satisfying a Kac-Moody algebra, whose central charge does not depend on the Maxwell term.Comment: 30 page

    Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors: Part I—Experiment

    Get PDF
    An experimental and theoretical investigation has been conducted to evaluate the effects seen in axial-flow compressors when the centerline of the rotor is displaced from the centerline of the static structure of the engine. This creates circumferentially nonuniform rotor-tip clearances, unsteady flow, and potentially increased clearances if the rotating and stationary parts come in contact. The result not only adversely affects compressor stall margin, pressure rise capability, and efficiency, but also generates an unsteady, destabilizing, aerodynamic force, called the Thomas/Alford force, which contributes significantly to rotor whirl instabilities in turbomachinery. Determining both the direction and magnitude of this force in compressors, relative to those in turbines, is especially important for the design of mechanically stable turbomachinery components. Part I of this two-part paper addresses these issues experimentally and Part II presents analyses from relevant computational models. Our results clearly show that the Thomas/Alford force can promote significant backward rotor whirl over much of the operating range of modern compressors, although some regions of zero and forward whirl were found near the design point. This is the first time that definitive measurements, coupled with compelling analyses, have been reported in the literature to resolve the long-standing disparity in findings concerning the direction and magnitude of whirl-inducing forces important in the design of modern axial-flow compressors

    NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology

    Get PDF
    Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA’s baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions

    The Butterfly Fauna Of The Italian Maritime Alps:Results Of The «Edit» Project

    Get PDF
    Bonelli, Simona, Barbero, Francesca, Casacci, Luca Pietro, Cerrato, Cristiana, Balletto, Emilio (2015): The butterfly fauna of the Italian Maritime Alps: results of the EDIT project. Zoosystema 37 (1): 139-167, DOI: 10.5252/z2015n1a6, URL: http://dx.doi.org/10.5252/z2015n1a
    corecore