66 research outputs found

    The effectiveness of interventions to change six health behaviours: a review of reviews

    Get PDF
    Background: Several World Health Organisation reports over recent years have highlighted the high incidence of chronic diseases such as diabetes, coronary heart disease and cancer. Contributory factors include unhealthy diets, alcohol and tobacco use and sedentary lifestyles. This paper reports the findings of a review of reviews of behavioural change interventions to reduce unhealthy behaviours or promote healthy behaviours. We included six different health-related behaviours in the review: healthy eating, physical exercise, smoking, alcohol misuse, sexual risk taking (in young people) and illicit drug use. We excluded reviews which focussed on pharmacological treatments or those which required intensive treatments (e. g. for drug or alcohol dependency). Methods: The Cochrane Library, Database of Abstracts of Reviews of Effectiveness (DARE) and several Ovid databases were searched for systematic reviews of interventions for the six behaviours (updated search 2008). Two reviewers applied the inclusion criteria, extracted data and assessed the quality of the reviews. The results were discussed in a narrative synthesis. Results: We included 103 reviews published between 1995 and 2008. The focus of interventions varied, but those targeting specific individuals were generally designed to change an existing behaviour (e. g. cigarette smoking, alcohol misuse), whilst those aimed at the general population or groups such as school children were designed to promote positive behaviours (e. g. healthy eating). Almost 50% (n = 48) of the reviews focussed on smoking (either prevention or cessation). Interventions that were most effective across a range of health behaviours included physician advice or individual counselling, and workplace- and school-based activities. Mass media campaigns and legislative interventions also showed small to moderate effects in changing health behaviours. Generally, the evidence related to short-term effects rather than sustained/longer-term impact and there was a relative lack of evidence on how best to address inequalities. Conclusions: Despite limitations of the review of reviews approach, it is encouraging that there are interventions that are effective in achieving behavioural change. Further emphasis in both primary studies and secondary analysis (e.g. systematic reviews) should be placed on assessing the differential effectiveness of interventions across different population subgroups to ensure that health inequalities are addressed.</p

    Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    Get PDF
    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties

    Once-weekly selinexor, bortezomib, and dexamethasone versus twice-weekly bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label phase 3 trial

    Get PDF
    Background Selinexor with dexamethasone has demonstrated activity in patients with heavily pretreated multiple myeloma (MM). In a phase 1b/2 study, the combination of oral selinexor with the proteasome inhibitor (PI) bortezomib, and dexamethasone (SVd) induced high response rates with low rates of peripheral neuropathy, the main dose-limiting toxicity of bortezomib. The aim of this trial was to evaluate the clinical benefit of weekly SVd versus standard bortezomib and dexamethasone (Vd) in patients with previously treated MM. Methods This phase 3, randomised, open label trial was conducted at 123 sites in 21 countries. Patients who were previously treated with one to three lines of therapy, including PIs were randomised (1:1) to selinexor (100 mg once-weekly) plus bortezomib (1·3 mg/m2 once-weekly) and dexamethasone (20 mg twice-weekly) [SVd] or bortezomib (1·3 mg/m2 twice-weekly) and dexamethasone (20 mg 4 times per week) [Vd]. Randomisation was done using interactive response technology and stratified by previous PI therapy, lines of treatment, and MM stage. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population. Patients who received at least one dose of study treatment were included in the safety population. This trial is registered at ClinicalTrials.gov, NCT03110562. Findings Between June 2017 and February 2019, 402 patients were randomised: 195 to SVd and 207 to Vd. Median PFS was 13·93 (95% CI 11·73–NE) with SVd versus 9·46 months (8·11–10·78) with Vd; HR 0·70, [95% CI 0·53–0·93]; P=0.0075. Most frequent grade ≥3 adverse events (SVd vs Vd) were thrombocytopenia (77 [40%] vs 35 [17%]), fatigue (26 [13%] vs 2 [1%]), anaemia (31 [16%] vs 20 [10%]), and pneumonia (22 [11%] vs 22 [11%]). Peripheral neuropathy rates (overall, 32·3% vs 47·1%; OR 0·52, [95% CI 0·35-0·79]; P=0.0010 and grade ≥2, 21·0% vs 34·3%; OR 0·50, [95% CI 0·32-0·79]; P=0.0013) were lower with SVd. There were 47 (24%) deaths on SVd and 62 (30%) on Vd. Interpretation Once-weekly SVd is a novel, effective, and convenient treatment option for patients with MM who have received 1-3 prior therapies. Funding Karyopharm Therapeutics In

    Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies

    Get PDF
    Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Diretrizes para cessação do tabagismo - 2008

    Full text link

    Can Insects Develop Resistance to Insect Pathogenic Fungi?

    Get PDF
    This paper presents new, important information on the microevolution of insect resistance to the insect pathogenic fungus Beauveria bassiana which will have far-reaching implications for the development of insect pathogenic fungi as biological control agents. We placed successive generations of a melanic population of the Greater wax moth, Galleria mellonella, under constant selective pressure from the insect pathogenic fungus, Beauveria bassiana. Enhanced fungal resistance was observed and larvae from the 25th generation were studied in detail to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. There are 3 novel, core findings from the study:1.Antifungal resistance in these insects is pathogen species-specific, and probably arises through trans-generational immune priming. The resistance was less obvious in earlier generations, suggesting subtle cumulative changes that are only fully apparent in the 25th generation. 2.The insect’s fecundity is already pushed close to minimum by its melanic phenotype. Therefore, the additional drain on resources required to boost antifungal defence still more, comes not from further compromising life history traits but via a re-allocation of the insect’s immune defences. Specifically during B. bassiana infection, systemic (fat body and hemocoel) responses, particularly the expression of antimicrobial peptides, are damped down in favour of a tailored repertoire of enhanced responses in the integument (cuticle and epidermis) – the foremost and most important barrier to natural fungal infection. 3.A previously-overlooked range of putative stress-management factors are activated during the specific response of selected insects to B. bassiana. This too occurs primarily in the integument, and contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses during the battle between host and pathogen.No other study to date has examined so many genes in this context. Indeed, we show that the epidermis has a great capacity to express defense and stress-management genes as well as the fat body (which is the main tissue producing antimicrobial peptides and has been the traditional focus of attention). We therefore propose a “be specific / fight locally / de-stress” model to explain resource allocation and defence priorities for insects selected for superior resistance to insect-pathogenic fungi. However, we also show that these insects are less fecund and probably at no evolutionary advantage in the wild, implying that the risk is small of biological control agents failing in the field

    Effects of host switching on gypsy moth ( Lymantria dispar (L.)) under field conditions

    Full text link
    Effects of various single and two species diets on the performance of gypsy moth ( Lymantria dispar (L.)) were studied when this insect was reared from hatch to population on intact host trees in the field. The tree species used for this study were red oak ( Quercus rubra L.), white oak (Q. alba L.), bigtooth aspen ( Populus grandidentata Michaux), and trembling aspen ( P. tremuloides Michaux). These are commonly available host trees in the Lake States region. The study spanned two years and was performed at two different field sites in central Michigan. Conclusions drawn from this study include: (1) Large differences in gypsy moth growth and survival can occur even among diet sequences composed of favorable host species. (2) Larvae that spent their first two weeks feeding on red oak performed better during this time period than larvae on all other host species in terms of mean weight, mean relative growth rate (RGR), and mean level of larval development, while larvae on a first host of bigtooth aspen were ranked lowest in terms of mean weight, RGR, and level of larval development. (3) Combination diets do not seem to be inherently better or worse than diets composed of only a single species; rather, insect performance was affected by the types of host species eaten and the time during larval development that these host species were consumed instead of whether larvae ate single species diets or mixed species diets. (4) In diets composed of two host species, measures of gypsy moth performance are affected to different extents in the latter part of the season by the two different hosts; larval weights and development rates show continued effects of the first host fed upon while RGRs, mortality, and pupal weights are affected strongly by the second host type eaten. (5) Of the diets investigated in this study, early feeding on red oak followed by later feeding on an aspen, particularly trembling aspen, is most beneficial to insects in terms of attaining high levels of performance throughout their lives.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47802/1/442_2004_Article_BF00323144.pd
    corecore