973 research outputs found
Reduction of the Casimir force using aerogels
By using silicon oxide based aerogels we show numerically that the Casimir
force can be reduced several orders of magnitude, making its effect negligible
in nanodevices. This decrease in the Casimir force is also present even when
the aerogels are deposited on metallic substrates. To calculate the Casimir
force we model the dielectric function of silicon oxide aerogels using an
effective medium dielectric function such as the Clausius-Mossotti
approximation. The results show that both the porosity of the aerogel and its
thickness can be use as control parameters to reduce the magnitude of the
Casimir force.Comment: to appear J. Appl. Phy
Variations of the Lifshitz-van der Waals force between metals immersed in liquids
We present a theoretical calculation of the Lifshitz-van der Waals force
between two metallic slabs embedded in a fluid, taking into account the change
of the Drude parameters of the metals when in contact with liquids of different
index of refraction. For the three liquids considered in this work, water,
and the change in the Drude parameters of the metal imply a
difference of up to 15% in the determination of the force at short separations.
These variations in the force is bigger for liquids with a higher index of
refraction.Comment: 2 figures, 1 tabl
Pull-in control due to Casimir forces using external magnetic fields
We present a theoretical calculation of the pull-in control in capacitive
micro switches actuated by Casimir forces, using external magnetic fields. The
external magnetic fields induces an optical anisotropy due to the excitation of
magneto plasmons, that reduces the Casimir force. The calculations are
performed in the Voigt configuration, and the results show that as the magnetic
field increases the system becomes more stable. The detachment length for a
cantilever is also calculated for a cantilever, showing that it increases with
increasing magnetic field. At the pull-in separation, the stiffness of the
system decreases with increasing magnetic field.Comment: accepted for publication in App. Phys. Let
The role of magnetoplasmons in Casimir force calculations
In this paper we review the role of magneto plasmon polaritons in the Casimir
force calculations. By applying an external constant magnetic field a strong
optical anisotropy is induced on two parallel slabs reducing the reflectivity
and thus the Casimir force. As the external magnetic field increases, the
Casimir force decreases. Thus, with an an external magnetic field the Casimir
force can be controlled.The calculations are done in the Voigt configuration
where the magnetic field is parallel to the slabs. In this configuration the
reflection coefficients for TE and TM modes do not show mode conversion.Comment: contribution to QFEXT09, Norman, Oklahoma 200
Spatial dispersion in Casimir forces: A brief review
We present the basic principles of non-local optics in connection with the
calculation of the Casimir force between half-spaces and thin films.
At currently accessible distances , non-local corrections amount to about
half a percent, but they increase roughly as 1/L at smaller separations. Self
consistent models lead to corrections with the opposite sign as models with
abrupt surfaces.Comment: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 200
MPI+OpenMP tasking scalability for the simulation of the human brain
The simulation of the behavior of the Human Brain is one of the most ambitious challenges today with a non-end of important applications. We can find many different initiatives in the USA, Europe and Japan which attempt to achieve such a challenging target. In this work we focus on the most important European initiative (Human Brain Project) and on one of the tools (Arbor). This tool simulates the spikes triggered in a neuronal network by computing the voltage capacitance on the neurons' morphology, being one of the most precise simulators today. In the present work, we have evaluated the use of MPI+OpenMP tasking on top of the Arbor simulator. In this paper, we present the main characteristics of the Arbor tool and how these can be efficiently managed by using MPI+OpenMP tasking. We prove that this approach is able to achieve a good scaling even when computing a relatively low workload (number of neurons) per node using up to 32 nodes. Our target consists of achieving not only a highly scalable implementation based on MPI, but also to develop a tool with a high degree of abstraction without losing control and performance by using MPI+OpenMP tasking.We would like to apreciate the valuable feedback and help provided by Benjamin Cumming and Alexander Peyser. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1 and HBP SGA2), from the Spanish Ministry of Economy and Competitiveness under the project Computacion de Altas Prestaciones VII (TIN2015- ´ 65316-P) and the Departament d’Innovacio, Universitats i ´ Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programacio i Entorns d’Execuci ´ o Paral ´ ·lels (2014-SGR-1051). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska Curie grand agreement No.749516Peer ReviewedPostprint (author version
Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation
The interaction between drifting carriers and traveling electromagnetic waves
is considered within the context of the classical Boltzmann transport equation
to compute the Casimir-Lifshitz force between media with small density of
charge carriers, including dielectrics and intrinsic semiconductors. We expand
upon our previous work [Phys. Rev. Lett. {\bf 101}, 163203 (2008)] and derive
in some detail the frequency-dependent reflection amplitudes in this theory and
compute the corresponding Casimir free energy for a parallel plate
configuration. We critically discuss the the issue of verification of the
Nernst theorem of thermodynamics in Casimir physics, and explicity show that
our theory satisfies that theorem. Finally, we show how the theory of drifting
carriers connects to previous computations of Casimir forces using spatial
dispersion for the material boundaries.Comment: 9 pages, 2 figures; Contribution to Proceedings of "60 Years of the
Casimir Effect", Brasilia, June 200
Casimir-like tunneling-induced electronic forces
We study the quantum forces that act between two nearby conductors due to
electronic tunneling. We derive an expression for these forces by calculating
the flux of momentum arising from the overlap of evanescent electronic fields.
Our result is written in terms of the electronic reflection amplitudes of the
conductors and it has the same structure as Lifshitz's formula for the
electromagnetically mediated Casimir forces. We evaluate the tunneling force
between two semiinfinite conductors and between two thin films separated by an
insulating gap. We discuss some applications of our results.Comment: 8 pages, 3 figs, submitted to Proc. of QFEXT'05, to be published in
J. Phys.
Guiding signs in metabolic disease diagnosis
Los errores innatos del metabolismo son un grupo de enfermedades genéticas con sintomatología muy inespecífica y por tanto difícil diagnóstico si no existe una sospecha clínica elevada. Sin embargo existen algunos datos de la exploración física y de las pruebas complementarias que pueden enfocar el proceso diagnóstico hacia la solicitud de pruebas específicas que lo confirmen. El caso que presentamos trata de destacar algunos de estos datos que pueden hacer sospechar la existencia de un defecto congénito de la glucosilación de proteínas, trastorno infrecuente pero con algunas formas tratables, por lo que su sospecha y diagnóstico precoz es de vital importanciaInborn errors of metabolism are a group of genetic diseases with non specific symptoms and therefore difficult to diagnose without high clinical suspicion. However there are some physical examination data and laboratory tests that can focus the diagnostic process to the implementation of specific tests to confirm them. The case exposed highlights some of these data that can make us suspect the existence of a congenital defect of glycosylation of proteins, rare disorder but with some treatable variations, that make their suspicion and early diagnosis of great importanc
Microscopic origin of the conducting channels in metallic atomic-size contacts
We present a theoretical approach which allows to determine the number and
orbital character of the conducting channels in metallic atomic contacts. We
show how the conducting channels arise from the atomic orbitals having a
significant contribution to the bands around the Fermi level. Our theory
predicts that the number of conducting channels with non negligible
transmission is 3 for Al and 5 for Nb one-atom contacts, in agreement with
recent experiments. These results are shown to be robust with respect to
disorder. The experimental values of the channels transmissions lie within the
calculated distributions.Comment: 11 pages, 4 ps-figures. Submitted to Phys. Rev. Let
- …
