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Abstract—The simulation of the behavior of the Human Brain
is one of the most ambitious challenges today with a non-end
of important applications. We can find many different initiatives
in the USA, Europe and Japan which attempt to achieve such a
challenging target. In this work we focus on the most important
European initiative (Human Brain Project) and on one of the
tools (Arbor). This tool simulates the spikes triggered in a
neuronal network by computing the voltage capacitance on the
neurons’ morphology, being one of the most precise simulators
today. In the present work, we have evaluated the use of
MPI+OpenMP tasking on top of the Arbor simulator. In this
paper, we present the main characteristics of the Arbor tool and
how these can be efficiently managed by using MPI+OpenMP
tasking. We prove that this approach is able to achieve a good
scaling even when computing a relatively low workload (number
of neurons) per node using up to 32 nodes. Our target consists
of achieving not only a highly scalable implementation based on
MPI, but also to develop a tool with a high degree of abstraction
without losing control and performance by using MPI+OpenMP
tasking.

Index Terms—MPI, OpenMP, Tasking, Simulation, Arbor,
Human Brain

I. MOTIVATION

Today, we can find multiple initiatives that attempt to
simulate the behavior of the Human Brain by computer
simulations [1], [2], [3], [4]. This is one of the most important
challenges in the recent history of computing with a large num-
ber of practical applications. The main constraint is being able
to simulate efficiently a huge number of neurons (11 billions
of neurons in the Human Brain) using the current computer
technology. One of them is the called NEST Initiatives [5].
In particular, in this work, we focus on Arbor [6], [7], one of
the tools of this initiative. The main motivation of this new
initiative is to design and develop a modular brain simulator,
which is able to adapt the simulator to the target platform.
In the present paper, the authors explore for the first time
the use of MPI+OpenMP tasking on homogeneous multi-core
clusters. Although, we would like to see the work performed
in this paper as a new back-end based on MPI+OpenMP of
the Arbor simulator, it is important to note that we are not the
developers of such simulator, and the MPI+OpenMP tasking
is not integrated into the Arbor simulator.

One of the most efficient ways in which the scientific
community attempts to simulate the behavior of the Human
Brain consists of computing the next 3 major steps [8]:
The computing of 1) the Voltage on neuron morphology,
2) the synaptic elements in each of the neurons and 3) the
connectivity between the neurons. Previously to compute these
steps, the network of neurons, the size and shape of the
neurons and the connectivity between them, is created.

In this work, we focus on evaluating the MPI scalability for
the simulation of the Human Brain. Our simulations include all
the steps of the simulator. The contribution of the present work
is twofold. i) we describe in detail the model followed by the
simulator ii) we evaluate the use of MPI+OpenMP to minimize
the impact of the MPI communication, and exploiting the
efficiency of OpenMP tasking, not only to orchestrate the
overlapping of communication and computation, but also to
develop a tool with a high degree of abstraction without losing
control and performance.

One of the most important challenges in this work is
to implement an approach that can benefit from the strate-
gies presented in the numerical model (simulator), with the
minimal programing effort and the maximum performance.
This is performed by using MPI AllGather for the inter-node
communication and OpenMP tasking for the intra-node com-
putation and communication/computation overlapping. Both,
MPI AllGather and OpenMP tasking can introduce a non-
negligible overhead regarding distributed-memory communi-
cation and thread scheduling on shared-memory. However,
in this work, we will prove that this approach is not only
an affordable and reduced-cost implementation in terms of
programming, but also it is able to exploit efficiently the
strategy implemented in the numerical model, achieving even
ideal scaling.

This paper is structured as follows. Section II describes the
physical problem at hand and the general numerical framework
that has been selected to cope with it. In Section III, we
present the specific parallel features for the resolution of
the simulation, as well as the parallel strategies envisaged
to optimally enhance the performance. Section IV shows the
performance study to evaluate the scalability of our approach.
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Section V goes through the state-of-the-art references and
related work. Conclusions are outlined in Section VI.

II. HUMAN BRAIN SIMULATOR

The simulator is divided into two major tasks [9]: i)
computation of neurons (Voltage capacitance and spikes),
and ii) exchange of the spike events between neurons which
are connected through synapses. In the model used by the
simulator, the neurons can be seen as multi-compartment
cables (see Figure 1) composed of active electrical elements.
This model can benefit from several HPC capabilities such as
vectorization, tasking, and communication/computation over-
lapping.

Fig. 1. Multi-compartment neuron model [9].

Next we describe the numerical framework behind the
computation of the Voltage capacitance on neurons morphol-
ogy [10], which is one of the most time consuming steps of
the simulation. It follows the next general form:
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where f and g are functions on x-dimension and the current
I and capacitance C [8] depend on the voltage V. Discretizing

the previous equation on a given morphology we obtain a
system that has to be solved every time-step. This system must
be solved at each point:
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The ai and bi are constant in time, and they are computed
once at start up. Otherwise, the diagonal (di) and right-
side-hand (rhs) coefficients are updated every time-step when
solving the system.

The discretization explained above is extended to include
branching, where the spatial domain (neuron morphology) is
composed of a series of one-dimension sections that are joined
at branch points according to the neuron morphology.

For the sake of clarity, we illustrate a simple example
of a neuron morphology in Figure 2, divided by segments
(si, i = 1, . . . , 4) and nodes (ni, i = 1, . . . , 6) which connects
the segments. It is important to note that the graph formed
by the neuron morphology is an acyclic graph, i.e. it has no
loops. The nodes are numbered using a scheme that gives the
matrix sparsity structure that allows to solve the system in
linear time.

To describe the sparsity of the matrix from the numbering
used, we need an array (pi i ∈ [2 : n]) which stores
the parent indexes of each node. The pattern of the matrix
which illustrates the morphology shown above is graphically
illustrated in Figure 2.

The Hines matrices feature the following properties: they are
symmetric, the diagonal coefficients are all nonzero and per
each off-diagonal element, there is one off-diagonal element
in the corresponding row and column (see row/column 7, 12,
17 and 22 in Figure 2).

Given the aforementioned properties, the Hines systems
(Ax = b) can be efficiently solved by using an algorithm
similar to Thomas algorithm for solving tridiagonal systems.
This algorithm, called Hines algorithm, is almost identical to
the Thomas algorithm except by the sparsity pattern given
by the morphology of the neurons whose pattern is stored
by the p vector. An example of the sequential code used to
implement the Hines algorithm is illustrated in pseudo-code
in Algorithm 1.

Once the voltage is computed, we compute the spikes.
Basically, this consists of going through the different points
on the neurons’ morphology where there is a synapse (a
connection between two neurons) and check if the voltage
in these points is higher or lower than a given threshold to
trigger or not a spike.

It is important not to forget one of the most important
challenges into this model. This is the massive spike exchange



Fig. 2. Example of a neuron morphology and its numbering (left-top and bottom) and sparsity pattern corresponding to the numbering followed (top-right) [10].

Algorithm 1 Hines algorithm.
1: void solveHines(double *u, double *l, double *d,
2: double *rhs, int *p, int cellSize)
3: // u → upper vector, l → lower vector
4: int i;
5: double factor;
6: // Backward Sweep
7: for i = cellSize− 1→ 0 do
8: factor = u[i] / d[i];
9: d[p[i]] -= factor × l[i];

10: rhs[p[i]] -= factor × rhs[i];
11: end for
12: rhs[0] /= d[0];
13: // Forward Sweep
14: for i = 1→ cellSize− 1 do
15: rhs[i] -= l[i] × rhs[p[i]];
16: rhs[i] /= d[i];
17: end for

between the neurons, which can be a problem on current dis-
tributed memory clusters due to the large difference between
communication and computation speed, in particular if this
communication has to be carried out using the MPI AllGather
routine, since one neuron can be connected (through the
synapses) with a huge number of neurons. The strategy fol-
lowed in this model to deal with this problem consists of the
next ideas. The simulation time is divided into two different
time-step factors, one local (dt in Figure 3) and one global
(Network delay in Figure 3). In every local (dt) iteration, all
the neurons are computed and the spike events are stored in
one local buffer. There is no MPI communication at this level.
After computing several local steps, we compute what we
call global (Network delay) step. The MPI (MPI AllGather)
communication is carried out in this step. Basically, it consists
of two tasks: first we store the spike events triggered, along
one global step, into other local buffer, then we send/receive
the information of the spikes to/from the rest of nodes using
MPI AllGather. In this way, all the nodes have the information
about the spikes triggered along the simulation.

It is important to note that, although this model is in need

Fig. 3. Time-stepping used by the Arbor simulator [10].

of exchanging the information about the spikes every global
step, there is an important difference between the data size sent
in the spikes exchange (MPI AllGather) and the operations
computed along the local steps that compose one global step.
For instance, let us assume that we have N neurons of size M,
where every neuron has S synapses. Let us also assume that we
compute D local steps per global step, and along these steps Sp
spikes were triggered (Sp <= S). The operations performed
every global step are D×(N×((8×M)+(S))), being (8×M)
the necessary operations to compute the Hines algorithm on
a neuron of size M and S the operations performed for spike
computation on synapses. While the data transfered is N×Sp,
the operations computed are D × N × (8 ×M), which are
musch bigger than the data size communicated. Depending
on the simulation, these parameters can be very different;
however, a commonly used value used for M [11] is about
of 10− 800, for S is 200− 1000, and N depends more on the
hardware (memory) limit and simulation time desired than on
one specific range, but in our experiments we execute in the
range of dozens to hundreds of thousands of neurons. D can
be about of 10− 20.

III. PARALLEL MPI+OPENMP TASKING SIMULATOR

After reviewing the main characteristics of the simulator, we
focus on the parallelization. We decided to use MPI+OpenMP,



since both are standards, being the most extended and used
programing model for distributed memory and shared memory
computation, respectively. In fact, in the last years the concept
of MPI+X is more and more popular, being the OpenMP
standard the most popular and widely used candidate for the
X unknown into the equation MPI+X.

As commented above, for MPI communication, we make
use of the MPI AllGather routine due to the particular nature
of our target application (see above). Although this routine is
among the least scalable routine in MPI, we will show that
it is possible to achieve a good scalability by minimizing the
cost of this routine thanks to both, the model used for the
simulation and the parallelization implemented.

Recently, since OpenMP 4.0 [12], it is possible to use
tasking into OpenMP. Using tasking not only allows us to
declare the dependences among tasks and let the compiler
deal with the best distribution of the tasks on multi-core
processors, but it also helps us to implement MPI+OpenMP
codes very easily. For instance, we can encapsulate MPI
routines into OpenMP tasks, which considerably simplifies the
interoperability between both standards and the overlapping of
MPI communication with OpenMP computing.

Updates

Exchange

Fig. 4. Parallel model implemented for the simulator based on MPI+OpenMP
tasking. Vertical/horizontal axes correspond to time/#cores.

Our target is to achieve the model graphically illustrated
in Figure 4, overlapping the computation of the neurons
(Updates in Figure 4) and the MPI communication (Exchange
in Figure 4). Although there are many different ways to
achieve this target, we intend an easy to implement and
as much transparent (from the programmer’s point of view)
as possible approach that can yield a good scalability and
performance. It is also important that our implementation
makes use of standard programing models, minimizing (even
avoiding) the programing effort to maintain, porting and/or
tunning performance our application. Keeping this idea in
mind, we parallelize our code using OpenMP tasking in the
way that is illustrated by the Algorithm 2.

The parallelization is based on OpenMP pragmas. First we
open (fork) a parallel region by using #pragma omp parallel
every global time-step (global step in Algorithm 2). After
this, since we use OpenMP tasking, we must use #pragma

Algorithm 2 Parallel implementation.
1: while(global step ¡ total steps){
2: #pragma omp parallel{
3: #pragma omp master{
4: #pragma omp task
5: MPI AllGather(Spikes);
6: #pragma omp task
7: for( local step=0; local step¡total local steps;

local step++){
8: for( i=0; i¡#Neurons; i++){
9: #pragma omp task{

10: Hines(Neuron[i]);
11: Spikes(Neuron[i]);
12: } //End omp task
13: } //End for #Neurons
14: #pragma omp taskwait
15: } //End for total local steps
16: } //End omp master
17: } //End omp parallel
18: global step++;
19: }

omp master. At this level, we can create as many OpenMP
tasks as we want. For the sake of clarity and due to the
modularity of the code, every major step (MPI communication,
Hines and Spikes computation) is implemented in separate
files, we make use of nesting. In the first level of parallelism,
we use two tasks, one for MPI communication and one for
OpenMP computation. The last task (line 4 in Algorithm 2)
instantiates one task (line 9 in Algorithm 2) per neuron, which
computes the Hines algorithm and the Spike computation on
one particular neuron. After the #Neurons for loop (line 14
in Algorithm 2) we must synchronize the tasks instantiated
because of the data-dependences among different iterations
of the total local step for loop. The parallel region is closed
(join) every global time step. As we show in the next section,
the overhead of fork-join, nesting, and tasks synchronization
does not represent an important overhead with respect to the
computational intensity to compute the Hines algorithm on a
high number of neurons.

As shown in Algorithm 2, “just” using 5 different OpenMP
pragmas and one MPI primitive, we are able to have a portable,
easy to maintain and optimized MPI code for the simulation
of the Human Brain.

IV. PERFORMANCE ANALYSIS

The platform used in our experiments is a cluster composed
of 39 NUMA nodes cluster with 2 sockets each, using Intel
Xeon CPU E5649, see Table I for more details. Hyperthread-
ing is not enabled.

In all the experiments we use one MPI process per node,
and as many OpenMP threads as cores available (12 in our
test platform). We use the default values for the parameters
regarding the size of the neurons (450) and number of synapses
per neuron (500) 1. The simulations consist of computing 10
global iterations (Network delay in Figure 3) and 10 local

1For those experiments, which involve 100 neurons, the number of synapses
per neuron is 100, achieving a fully-connected neuronal network



TABLE I
DETAILS OF THE ARCHITECTURE USED

Platform Xeon E55649 (Westmere) at 2.53 GHz
Cores 2×6

On-chip Memory L1 32KB (per core)
L2 256KB (per core)
L3 12MB (unified)

Main Memory 24GB DDR4
Compiler gcc 6.2.0
Network 2 Infiniband QDR (4 Gbit/s each)

non-blocking network

iterations (dt in Figure 3) per global iteration. The number
of spikes triggered along the execution only depends on the
parameters of the simulation, not on the number of nodes and
cores per node. In particular it has a strong relationship with
the number of neurons computed. In general the more neurons,
the more spikes (see Figure 5). The number of spikes triggered
(data size transferred) can be different every global iteration.
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Fig. 5. Total number of spikes triggered in each of the experiments.

Next, we analyze the strong and weak scaling of our
approach. First we focus on strong scaling analysis. In this
case we have launched 4 test cases regarding the number of
neurons computed (100, 1,000, 10,000 and 100,000). Figure 6
graphically illustrates the strong scaling analysis by increasing
the number of nodes keeping constant the number of neurons
computed in the simulation. The neurons computed per node
depend on the number of nodes used. For instance, for a simu-
lation composed of 100,000 neurons and executed on 2 nodes,
half of the neurons (50,000 neurons) are computed on one
node and the rest of neurons on the other node. In case of using
4 nodes, every node computes 25,000 neurons. As shown, our
approach is able to achieve an ideal strong scaling, except in
the case of computing 100 neurons on 32 nodes (384 cores),
where the overhead of the MPI communication and OpenMP
thread scheduling dominates against the computations on the
neurons. This is because, in this case, the number of neurons
per node is very low (3). Unlike the previous scenario, when
computing 1,000 neurons on 32 nodes (31 neurons per node),
we do not find this behavior, so that it is proven that it is not

necessary to have a high workload per node to yield a good
scaling.
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Fig. 6. Strong scaling analysis.

After analyzing the strong scaling, we analyze the weak
scaling by increasing the number of nodes keeping constant
the number of neurons computed in the simulation per node.
In this case we have two test-cases regarding the number of
neurons distributed per node, 1,000 and 10,000 neurons per
node, respectively. As shown in Figure 7, our MPI+OpenMP
tasking implementation is able to achieve an ideal weak scaling
using up to 32 nodes.
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Fig. 7. Weak scaling analysis.

In order to perform a deeper analysis on the implementation
presented, we have used the packages Extrae+Paraver [13].
Extrae is a dynamic instrumentation package to trace programs
compiled and run using OpenMP, OmpSs, pthreads, MPI or
a combination of the previous programming models (different
MPI processes using OpenMP threads within each MPI pro-
cess). Extrae generates trace files that can be later visualized
with Paraver.

The first two traces (Figures 8 and 9) correspond to the
execution of 10,000 neurons on 2 and 16 nodes, respectively.
Both traces have the same time-scale to see the differences in
time. In the traces, we can see three different colors which



Fig. 8. Trace of a simulation of 10,000 neurons on 2 nodes.

Fig. 9. Trace of a simulation of 10,000 neurons on 16 nodes.

correspond to OpenMP scheduling (in yellow), OpenMP ex-
ecution (in blue) and MPI communication (in orange). In
the traces, we see as many lines as cores used, 24 and 192
rows/cores for 2 and 16 nodes respectively (see Table I). Using
Extrae+Paraver we are able to visualize easily the reduction
in time achieved by increasing the number of nodes. In the
2 nodes trace (Figure 8) it is difficult to see the orange
color (MPI communication), since the time consumed by
MPI AllGather is very low with respect to the time needed by
the computation of the neurons just using 2 nodes. However,
when using 16 nodes (Figure 8), it is easier to identify
where the MPI communication is performed. Increasing the
number of nodes, we increase the complexity of the MPI
communication, the number of MPI calls, and then the time

consumed by these calls is bigger. However, even when the use
of MPI AllGather supposes an increment in time when using
a higher number of nodes, the time consumed by these calls
is less than the 0.4% of the total execution time. Furthermore,
these calls are overlapped (using OpenMP tasking) with the
OpenMP execution, so that this increment does not affect the
scalability. Only in extreme cases where we have a very low
number of neurons per node (see Figure 6) the time of the
MPI communication can affect the scalability. Due to the
OpenMP scheduler, the MPI communication is done in one
of the cores in each node, and the core responsible of the
communication can change along the simulation. In both traces
the predominant color is the blue (OpenMP computation).

To analyze the MPI communication and OpenMP schedul-



Fig. 10. Zoom on the trace for a simulation of 10,000 neurons on 2 nodes.

ing deeper, we zoom on in between the end of one global
step and the beginning of the following global step for both
traces (Figures 10 and 11). As in the previous traces, the
time-scale is the same in these two traces. We can see more
clearly the difference in time for MPI communication. The
MPI calls are about 25× bigger using 16 nodes with respect
to using 2 nodes. However, this is still low with respect to
the computing time and, as commented before, the MPI calls
are overlapped with computation thanks to OpenMP tasking.
Also, it is important to note that, unlike what we see in the
previous traces (Figures 8 and 9), the first cores of each of the
nodes also compute some operations on the neurons, so they
are not only busy computing OpenMP instructions.

V. RELATED WORK

It is possible to find many initiatives for the simulation of the
behavior of the Human Brain by computers across the world,
for instance in the USA [1], Europe [3], [2], [5] and Japan [4],
[14]. Each of these initiatives is focused on the development
of a set of tools for such target. In this work we have used
one of them, Arbor [7]. In particular, we have focused on the
scalability study using MPI+OpenMP tasking. This is the first
study using both standards on Arbor code.

Most of the state-of-the-art references are focused on ac-
celerating one of the most computationally expensive steps,
that is the Voltage capacitance on neurons’ morphologies. The
standard algorithm used to compute the Voltage on neurons’
morphology is the Hines algorithm [15]. This algorithm is
based on the Thomas algorithm [16], which solves tridiagonal
systems. Although the use of GPUs to compute the Thomas
algorithm has been deeply studied [17], [18], [19], [20],
[21], the differences among these two algorithms, Hines and
Thomas, makes us impossible to use the last one as the last
can not deal with the sparsity of the Hines matrix. Recently,
in [11] it was proposed a new methodology to deal with a

Fig. 11. Zoom on the trace for a simulation of 10,000 neurons on 16 nodes.

very high number of neurons on NVidia GPUs, achieving good
scalability.

Unlike previous works, we focused on the paralleliza-
tion and scalability on the whole application based on
MPI+OpenMP tasking. In fact, this approach has been also
used in other applications [22], such as the HPLinpack [23]
tool used for the performance analysis of the TOP-500
list [24], achieving good results.

VI. CONCLUSIONS AND FUTURE WORK

In the present work the authors proposed and evaluated
an efficient (in terms of programmability) and optimized (in
terms of performance and scalability) implementation for one
of the most important challenges into the scientific computing
community today, that is the simulation of the Human Brain.
Given the results obtained and presented in this paper, the
authors have proven the efficiency of using MPI+OpenMP
tasking to achieve a good scaling.



Although MPI AllGather and OpenMP tasking can intro-
duce a non-negligible overhead regarding distributed-memory
communication and thread scheduling on shared-memory, it
was proven that this approach is not only an affordable and
reduced-cost implementation in terms of programmability, but
also it is able to exploit efficiently the strategy implemented
in the Arbor tool, achieving even ideal scaling.

As future work, we plan to extend the work presented
here to involve multi-morphology simulations, simulate a high
number of neurons completely different, in terms of size and
morphology, between them. This can suppose an additional
challenge to deal with, in order to minimize the unbalancing
found in the computation on the neurons, which can cause a
non-neglected overhead, in particular for the MPI communi-
cation and the inter-node and intra-node synchronization.
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