299 research outputs found

    The formation of [M–H]+ ions in N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during atmospheric pressure photoionization mass spectrometry

    Get PDF
    RATIONALE The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M–H]+ ion peaks were observed. In this work we investigate the formation of [M–H]+ ions observed under APPI conditions. METHODS Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M–H]+ ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H]+ vs [M–H]+ ions and computational approaches were used. RESULTS [M–H]+ ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M–H]+ and [M + H]+ ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H]+ ions is the most favourable condition under which to form [M–H]+ ions. CONCLUSIONS [M–H]+ ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M–H]+ ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H]+ ions is proposed to be necessary

    Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    Get PDF
    The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to "danger" signals--by-products of damaged, infected or inflamed tissues--via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC.We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization.These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals

    Candida albicans Induces Selective Development of Macrophages and Monocyte Derived Dendritic Cells by a TLR2 Dependent Signalling

    Get PDF
    As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin− c-Kit+ Sca-1+ IL-7Rα−), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2−/− mice was delayed until day 7 post- infection. Candidiasis was, as expected, accompanied by an increase in granulopoiesis and decreased lymphopoiesis in the bone marrow. These changes were more pronounced in TLR2−/− mice correlating with their higher fungal burden. Accordingly, emigration of Ly6Chigh monocytes and neutrophils to spleen was increased in TLR2−/− mice, although the increase in macrophages and inflammatory macrophages was completely dependent on TLR2. Similarly, we detected for the first time, in the spleen of C. albicans infected control mice, a newly generated population of dendritic cells that have the phenotype of monocyte derived dendritic cells (moDCs) that were not generated in TLR2−/− infected mice. In addition, C. albicans signalling through TLR2/MyD88 and Dectin-1 promotes in vitro the differentiation of Lin− cells towards moDCs that secrete TNF-α and are able to kill the microorganism. Therefore, our results indicate that during infection C. albicans can directly stimulate progenitor cells through TLR2 and Dectin-1 to generate newly formed inflammatory macrophages and moDCs that may fulfill an essential role in defense mechanisms against the pathogen

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation

    Get PDF
    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA

    RNAi for Treating Hepatitis B Viral Infection

    Get PDF
    Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection
    corecore