232 research outputs found

    Hysteresis and precession of a swirling jet normal to a wall

    Get PDF
    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.V. Shtern, J. M

    Hysteresis and precession of a swirling jet normal to a wall

    Get PDF
    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.V. Shtern, J. M

    Some results of cislunar plasma research

    Get PDF
    The main results of plasma cislunar investigations, carried out during Luna-19 and Luna-22 spacecraft flights by means of dual frequency dispersion interferrometry, are briefly outlined. It is shown that a thin layer of plasma, with a height of several tens of kilometers and a maximum concentration of the order 1,000 electrons/cu cm exists above the solar illuminated lunar surface. A physical model of the formation and existence of such a plasma in cislunar space is proposed, taking into account the influence of local magnetic areas on the moon

    The nighttime ionosphere of Mars from Mars-4 and Mars-5 radio occultation dual-frequency measurements

    Get PDF
    Dual frequency radio sounding of the Martian nighttime ionosphere was carried out during the exits from behind the planet of the Mars-4 spacecraft on February 2, 1974 and the Mars-5 spacecraft on February 18, 1974. In these experiments, the spacecraft transmitter emitted two coherent monochromatic signals in decimeter and centimeter wavelength ranges. At the Earth receiving station, the reduced phase difference (or frequencies) of these signals was measured. The nighttime ionosphere of Mars measured in both cases had a peak electron density of approximately 5 X 1,000/cu cm at an altitude of 110 to 130 km. At the times of spacecraft exit, the solar zenith angles at the point of occultation were 127 deg and 106 deg, respectively. The height profiles of electron concentration were obtained assuming spherical symmetry of the Martian ionosphere

    Influence of rheological features of behaviour of the porous damaged materials on their indentation process

    Get PDF
    На основі теорії пластичності пористого тіл за допомогою комп'ютерного моделювання методом скінчених елементів досліджується напружено-деформований стан поблизу сферичного і конічного індентора при різних властивостях индентованого матеріалу. Аналізується розподіл густини в околі індентора в залежності від властивостей пористого тіла та умов тертя між індентором та пористим тілом. Наводяться діаграми навантаження в залежності від схильності до дилатансії та зовнішнього тертя. Приділено увагу виникненню та формі навалів навколо индентора.The purpose of this work was research of the main features of behavior of the porous and damaged powder based materials at indentation process. The mechanical behavior of such materials is characterized by a loosening at purely shift tension and asymmetry of a response to stretching and compression. The rheological model of plasticity of porous materials with imperfect interpartial contacts which was earlier proposed one of authors is considered. Based on such theory of plasticity for porous media with distributed damages using finite element computer simulation the deformed state near spherical and conical indenter for different mechanical properties of indented material and different friction conditions between indenter and porous body has been studied. Porosity distribution near indenter depending on properties of porous body and friction conditions between indenter and porous body has been analyzed. Load profiles as a function of dilatancy tendency and contact friction has been shown. Development of bulk around indenter and its shape has been investigated.На основе теории пластичности пористого тела с помощью компьютерного моделирования методом конечных элементов исследуется напряженно-деформированное состояние вблизи сферического и конического индентора при различных свойствах индентируемого материала. Анализируется распределение плотности в окрестности индентора в зависимости от свойств пористого тела и условий трения между индентором и пористым телом. Приводятся диаграммы нагружения в зависимости от склонности к дилатансии и внешнего трения. Уделяется внимание возникновению и форме навалов вокруг индентора

    Vortex breakdown in a water-spout flow

    Get PDF
    The numerical study of the steady axisymmetric air-water flow in a vertical sealed cylinder, driven by the rotating top disk, describes topological transformations as the rotation intensifies. The air meridional flow (AMF) and swirl induce meridional motions of opposite directions in water. For slow (fast) rotation, the effect of AMF (swirl) dominates. For very fast rotation, large-scale regions of clockwise meridional circulation in air and water are separated by a thin layer of anticlockwise circulation adjacent to the interface in water. This pattern develops for other fluids as well. Physical reasoning behind the flow evolution is provided
    corecore