25 research outputs found

    Gender Disparities in Water, Sanitation and Global Health

    No full text
    Celebrating World Water Day, The Lancet Editors1 highlighted the gains made towards Millennium Development Goal (MDG) 7c, “to halve, by 2015, the proportion of the population without sustainable access to safe drinking water and basic sanitation”, and noted UN-Water\u27s call for sustainable water management in view of future increases in demand and shortfalls in supply. As the primary water collectors worldwide, women are disproportionately affected by the scarcity of adequate resources; however, global estimates of improvements in water access do not reflect gender-disaggregated benefits and burdens

    Effect of furans and linoleic acid on hydrogen production

    No full text
    The effects of furans (furfural and 5-hydroxymethylfurfural (HMF)) on hydrogen (H2) production using mixed anaerobic cultures were evaluated by conducting batch experiments. Two mixed anaerobic cultures (culture A and B) fed furans plus glucose and treated with and without linoleic acid (LA) at pH 5.5 were maintained at 37 °C. In the LA inhibited cultures A and B fed 0.75 g L−1 furfural and 0.25 g L−1 HMF, the maximum H2 yields observed were 1.89 ± 0.27 mol mol−1 glucose and 1.75 ± 0.22 mol mol−1 glucose, respectively. In cultures with maximum H2 yields, Clostridium sp. and Flavobacterium sp. were dominant. Acetate, butyrate and ethanol were the major soluble metabolites detected in cultures A and B whereas propionate was also dominant in culture B. A canonical correspondence analysis based on the byproducts and the relative abundance of the terminal-restriction fragments revealed less variation between cultures treated with LA and low correlation value between the factors and the species composition

    RNA aptamers directed to discrete functional sites on a single protein structural domain

    No full text
    Cellular regulatory networks are organized such that many proteins have few interactions, whereas a few proteins have many. These densely connected protein “hubs” are critical for the system-wide behavior of cells, and the capability of selectively perturbing a subset of interactions at these hubs is invaluable in deciphering and manipulating regulatory mechanisms. SELEX-generated RNA aptamers are proving to be highly effective reagents for inhibiting targeted proteins, but conventional methods generate one or several aptamer clones that usually bind to a single target site most preferred by a nucleic acid ligand. We advance a generalized scheme for isolating aptamers to multiple sites on a target molecule by reducing the ability of the preferred site to select its cognate aptamer. We demonstrate the use of this scheme by generating aptamers directed to discrete functional surfaces of the yeast TATA-binding protein (TBP). Previously we selected “class 1” RNA aptamers that interfere with the TBP's binding to TATA-DNA. By masking TBP with TATA-DNA or an unamplifiable class 1 aptamer, we isolated a new aptamer class, “class 2,” that can bind a TBP·DNA complex and is in competition with binding another general transcription factor, TFIIA. Moreover, we show that both of these aptamers inhibit RNA polymerase II-dependent transcription, but analysis of template-bound factors shows they do so in mechanistically distinct and unexpected ways that can be attributed to binding either the DNA or TFIIA recognition sites. These results should spur innovative approaches to modulating other highly connected regulatory proteins
    corecore