51 research outputs found
Viral non-coding RNA inhibits HNF4α expression in HCV associated hepatocellular carcinoma
BACKGROUND: Hepatitis C virus (HCV) infection is an established cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC); however, it is unclear if the virus plays a direct role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is critical determinant of epithelial architecture and hepatic development; depletion of HNF4α is correlated with oncogenic transformation. We explored the viral role in the inhibition of HNF4α expression, and consequent induction of tumor-promoting genes in HCV infection-associated HCC. METHODS: Western blot analysis was used to monitor the changes in expression levels of oncogenic proteins in liver tissues from HCV-infected humanized mice. The mechanism of HNF4α depletion was studied in HCV-infected human hepatocyte cultures in vitro. Targeting of HNF4α expression by viral non-coding RNA was examined by inhibition of Luciferase HNF4α 3’-UTR reporter. Modulation of invasive properties of HCV-infected cells was examined by Matrigel cell migration assay. RESULTS: Results show inhibition of HNF4α expression by targeting of HNF4α 3’-UTR by HCV-derived small non-coding RNA, vmr11. Vmr11 enhances the invasive properties of HCV-infected cells. Loss of HNF4α in HCV-infected liver tumors of humanized mice correlates with the induction of epithelial to mesenchymal transition (EMT) genes. CONCLUSIONS: We show depletion of HNF4α in liver tumors of HCV-infected humanized mice by HCV derived small non-coding RNA (vmr11) and resultant induction of EMT genes, which are critical determinants of tumor progression. These results suggest a direct viral role in the development of hepatocellular carcinoma
Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala
A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments). Increased spine densities were also observed on the hippocampal CA1 pyramidal neurons (up to 109% on the distal apical segments and up to 106% on the basal segment) compared with the control group. In contrast, significantly reduced spine densities were observed on the granule cell dendrites in the dentate gyrus (down to 92%) and on the apical dendrites in the medial nucleus of the amygdala (down to 95%). No significant changes of spine densities were seen in the somatosensory cortex (except for an increase in the proximal apical segments) and in the lateral nucleus of the dorsal amygdala (except for an increase in the proximal basal dendritic segments). These results demonstrate that repeated stressful emotional experience alters the balance of presumably excitatory synaptic inputs of pyramidal neurons in the limbic system. Such experience-induced modulations of limbic circuits may determine psychosocial and cognitive capacities during later life
Stress, glucocorticoids and memory: implications for treating fear-related disorders
Glucocorticoid stress hormones are crucially involved in modulating mnemonic processing of emotionally arousing experiences. They enhance the consolidation of new memories, including those that extinguish older memories, but impair the retrieval of information stored in long-term memory. As strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias, the memory-modulating properties of glucocorticoids have recently become of considerable translational interest. Clinical trials have provided the first evidence that glucocorticoid-based pharmacotherapies aimed at attenuating aversive memories might be helpful in the treatment of fear-related disorders. Here, we review important advances in the understanding of how glucocorticoids mediate stress effects on memory processes, and discuss the translational potential of these new conceptual insights
- …