79 research outputs found

    Cellular bases for human atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K<sup>+</sup> current and altered Ca<sup>2+</sup> handling. Heart failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodeling, but the pattern is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially antiarrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment

    Acute success and short-term follow-up of catheter ablation of isthmus-dependent atrial flutter; a comparison of 8 mm tip radiofrequency and cryothermy catheters

    Get PDF
    Objectives: To compare the acute success and short-term follow-up of ablation of atrial flutter using 8 mm tip radiofrequency (RF) and cryocatheters. Methods: Sixty-two patients with atrial flutter were randomized to RF or cryocatheter (cryo) ablation. Right atrial angiography was performed to assess the isthmus. End point was bidirectional isthmus block on multiple criteria. A pain score was used and the analgesics were recorded. Patients were followed for at least 3 months. Results: The acute success rate for RF was 83% vs 69% for cryo (NS). Procedure times were similar (mean 144±48 min for RF, vs 158±49 min for cryo). More applications were given with RF than with cryo (26±17 vs. 18±10, p<0.05). Fluoroscopy time was longer with RF (29±15 vs. 19±12 min, p<0.02). Peak CK, CK-MB and CK-MB mass were higher, also after 24 h in the cryo group. Troponin T did not differ. Repeated transient block during application (usually with cryoablation) seemed to predict failure. Cryothermy required significantly less analgesia (p<0.01), and no use of long sheaths (p<0.005). The isthmus tended to be longer in the failed procedures (p=0.117). This was similar for both groups, as was the distribution of anatomic variations. Recurrences and complaints in the successful patients were similar for both groups, with a very low recurrence of atrial flutter after initial success. Concl

    Unmappable ventricular tachycardia after an old myocardial infarction. Long-term results of substrate modification in patients with an implantable cardioverter defibrillator

    Get PDF
    Purpose The frequent occurrence of ventricular tachycardia can create a serious problem in patients with an implantable cardioverter defibrillator. We assessed the long-term efficacy of catheter-based substrate modification using the voltage mapping technique of infarct-related ventricular tachycardia and recurrent device therapy. Methods The study population consisted of 27 consecutive patients (age 68 +/- 8 years, 25 men, mean left ventricular ejection fraction 31 +/- 9%) with an old myocardial infarction and multiple and/or hemodynamically not tolerated ventricular tachycardia necessitating repeated device therapy. A total of 31 substrate modification procedures were performed using the three-dimensional electroanatomical mapping system. Patients were followed up for a median of 23.5 (interquartile range 6.5-53.2) months before and 37.8 (interquartile range 11.7-71.8) months after ablation. Antiarrhythmic drugs were not changed after the procedure, and were stopped 6 to 9 months after the procedure in patients who did not show ventricular tachycardia recurrence. Results Median ventricular tachycardias were 1.6 (interquartile range 0.7-6.7) per month before and 0.2 (interquartile range 0.00-1.3) per month after ablation (P = 0.006). Nine ventricular fibrillation episodes were registered in seven patients before and two after ablation (P = 0.025). Median antitachycardia pacing decreased from 1.6 (interquartile range 0.01-5.5) per month before to 0.18 (interquartile range 0.00-1.6) per month after ablation (P = 0.069). Median number of shocks decreased from 0.19 (interquartile range 0.04-0.81) per month before to 0.00 (interquartile range 0.00-0.09) per month after ablation (P = 0.001). One patient had a transient ischemic attack during the procedure, and another developed pericarditis. Nine patients died during follow-up, eight patients due to heart failure and one patient during valve surgery. Conclusion Catheter-based substrate modification using voltage mapping results in a long-lasting reduction of cardioverter defibrillator therapy in patients with multiple and/or hemodynamically not tolerated infarct-related ventricular tachyarrhythmia

    Loss of the yeast SR protein Npl3 alters gene expression due to transcription readthrough

    Get PDF
    Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3' end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3' end formation. Tiling arrays and RNAPII mapping data revealed 3' extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression

    The Spt5 C-terminal region recruits yeast 3= RNA cleavage factor I

    No full text
    During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368 –1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572–1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3= RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3= ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo

    RNA polymerase I contains a TFIIF-related DNA-binding subcomplex

    No full text
    The eukaryotic RNA polymerases Pol I, II, and III use different promoters to transcribe different classes of genes. Promoter usage relies on initiation factors, including TFIIF and TFIIE, in the case of Pol II. Here, we show that the Pol I-specific subunits A49 and A34.5 form a subcomplex that binds DNA and is related to TFIIF and TFIIE. The N-terminal regions of A49 and A34.5 form a dimerization module that stimulates polymerase-intrinsic RNA cleavage and has a fold that resembles the TFIIF core. The C-terminal region of A49 forms a ‘‘tandem winged helix’’ (tWH) domain that bindsDNA with a preference for the upstream promoter nontemplate strand and is predicted in TFIIE. Similar domains are predicted in Pol III-specific subunits. Thus, Pol I/III subunits that have no counterparts in Pol II are evolutionarily related to Pol II initiation factors and may have evolved to mediate promoter specificity and transcription processivity

    RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7.

    No full text
    At the 3' ends of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine residues (Tyr1) of its C-terminal domain (CTD). In addition, the associated cleavage-and-polyadenylation factor (CPF) cleaves the transcript and adds a poly(A) tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II-CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the polyadenylation site, for recruitment of termination factors Pcf11 and Rtt103 and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II-Tyr1 dephosphorylation

    CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II.

    No full text
    In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5)
    • …
    corecore