79 research outputs found

    Racial discrepancies in the association between paternal vs. maternal educational level and risk of low birthweight in Washington State

    Get PDF
    BACKGROUND: The role of paternal factors in determining the risk of adverse pregnancy outcomes has received less attention than maternal factors. Similarly, the interaction between the effects of race and socioeconomic status (SES) on pregnancy outcomes is not well known. Our objective was to assess the relative importance of paternal vs. maternal education in relation to risk of low birth weight (LBW) across different racial groups. METHODS: We conducted a retrospective population-based cohort study using Washington state birth certificate data from 1992 to 1996 (n = 264,789). We assessed the associations between maternal or paternal education and LBW, adjusting for demographic variables, health services factors, and maternal behavioral and obstetrical factors. RESULTS: Paternal educational level was independently associated with LBW after adjustment for race, maternal education, demographic characteristics, health services factors; and other maternal factors. We found an interaction between the race and maternal education on risk of LBW. In whites, maternal education was independently associated with LBW. However, in the remainder of the sample, maternal education had a minimal effect on LBW. CONCLUSIONS: The degree of association between maternal education and LBW delivery was different in whites than in members of other racial groups. Paternal education was associated with LBW in both whites and non-whites. Further studies are needed to understand why maternal education may impact pregnancy outcomes differently depending on race and why paternal education may play a more important role than maternal education in some racial categories

    Modelling high-latitude electron densities with a coupled thermosphere-ionosphere model

    No full text
    A few of the difficulties in accurately modelling high-latitude electron densities with a large-scale numerical model of the thermosphere and ionosphere are addressed by comparing electron densities calculated with the Coupled Thermosphere-Ionosphere Model (CTIM) to EISCAT data. Two types of simulations are presented. The first set of simulations consists of four diurnally reproducible model runs for a Kp index of 4o which differ only in the placement of the energetic-particle distribution and convection pattern input at high latitudes. These simulations predict varying amounts of agreement with the EISCAT data and illustrate that for a given Kp there is no unique solution at high-latitudes. Small changes in the high-latitude inputs cause dramatic changes in the high-latitude modelled densities. The second type of simulation consists of inputting statistical convection and particle precipitation patterns which shrink or grow as a function of Kp throughout a 3-day period 21–23 February 1990. Comparisons with the EISCAT data for the 3 days indicate that equatorward of the particle precipitation the model accurately simulates the data, while in the auroral zone there is more variability in the data than the model. Changing the high-latitude forcing as a function of Kp allows the CTIM to model the average behavior of the electron densities; however at auroral latitudes model spatial and temporal scales are too large to simulate the detailed variation seen in individual nights of data
    • …
    corecore