18 research outputs found

    High-Density Electromyography Provides New Insights into the Flexion Relaxation Phenomenon in Individuals with Low Back Pain.

    Get PDF
    Recent research using high-density electromyography (HDEMG) has provided a more precise understanding of the behaviour of the paraspinal muscles in people with low back pain (LBP); but so far, HDEMG has not been used to investigate the flexion relaxation phenomenon (FRP). To evaluate this, HDEMG signals were detected with grids of electrodes (13 × 5) placed bilaterally over the lumbar paraspinal muscles in individuals with and without LBP as they performed repetitions of full trunk flexion. The root mean square of the HDEMG signals was computed to generate the average normalized amplitude; and the spatial FRP onset was determined and expressed as percentage of trunk flexion. Smoothing spline analysis of variance models and the contrast cycle difference approach using the Bayesian interpretation were used to determine statistical inference. All pain-free controls and 64.3% of the individuals with LBP exhibited the FRP. Individuals with LBP and the FRP exhibited a delay of its onset compared to pain-free controls (significant mean difference of 13.3% of trunk flexion).  They also showed reduced normalized amplitude compared to those without the FRP, but still greater than pain-free controls (significant mean difference of 27.4% and 11.6% respectively). This study provides novel insights into changes in lumbar muscle behavior in individuals with LBP

    Quantifying segmental contributions to center-of-mass motion during dynamic continuous support surface perturbations using simplified estimation models

    No full text
    Investigating balance reactions following continuous, multidirectional, support surface perturbations is essential for improving our understanding of balance control in moving environments. Segmental motions are often incorporated into rapid balance reactions following external perturbations to balance, although the effects of these motions during complex, continuous perturbations have not been assessed. This study aimed to quantify the contributions of body segments (ie, trunk, head, upper extremity, and lower extremity) to the control of center-of-mass (COM) movement during continuous, multidirectional, support surface perturbations. Three-dimensional, whole-body kinematics were captured while 10 participants experienced 5 minutes of perturbations. Anteroposterior, mediolateral, and vertical COM position and velocity were calculated using a full-body model and 7 models with reduced numbers of segments, which were compared with the full-body model. With removal of body segments, errors relative to the full-body model increased, while relationship strength decreased. The inclusion of body segments appeared to affect COM measures, particularly COM velocity. Findings suggest that the body segments may provide a means of improving the control of COM motion, primarily its velocity, during continuous, multidirectional perturbations, and constitute a step toward improving our understanding of how the limbs contribute to balance control in moving environments

    Leg Tissue Mass Composition Affects Tibial Acceleration Response Following Impact

    No full text
    To date, there has not been a direct examination of the effect that tissue composition (lean mass/muscle, fat mass, bone mineral content) differences between males and females has on how the tibia responds to impacts similar to those seen during running. To evaluate this, controlled heel impacts were imparted to 36 participants (6 M and 6 F in each of low, medium and high percent body fat [BF] groups) using a human pendulum. A skin-mounted accelerometer medial to the tibial tuberosity was used to determine the tibial response parameters (peak acceleration, acceleration slope and time to peak acceleration). There were no consistent effects of BF or specific tissue masses on the un-normalized tibial response parameters. However, females experienced 25% greater peak acceleration than males. When normalized to lean mass, wobbling mass, and bone mineral content, females experienced 50%, 62% and 70% greater peak acceleration, respectively, per gram of tissue than males. Higher magnitudes of lean mass and bone mass significantly contributed to decreased acceleration responses in general

    Assessing The Feasibility Of Pedometers For Quantifying The Volume Of Impacts During Varsity Athletic Practices

    No full text
    The purpose of the current investigation was to test the feasibility of utilizing pedometer data collected during game-like practices to quantify the number of impacts experienced by varsity athletes. Forty-four varsity basketball and soccer athletes wore pedometers and the total number of steps and practice time were recorded during two different practices of similar intensity. The normalized step count, calculated as the total numbers of steps divided by the practice time, was obtained from the first practice and was used to estimate the step count for the second practice. The estimated step count was then compared to the actual step count, as determined from the pedometers. The mean percent difference between actual and estimated step counts was under 25% for approximately 75% of all athletes with no significant difference between the estimated and actual number of steps. The presented results suggest that the pedometer-based method presented here is a feasible method for estimating the number of steps experienced by university varsity athletes
    corecore