97 research outputs found

    Rubber friction on smooth surfaces

    Full text link
    We study the sliding friction for viscoelastic solids, e.g., rubber, on hard flat substrate surfaces. We consider first the fluctuating shear stress inside a viscoelastic solid which results from the thermal motion of the atoms or molecules in the solid. At the nanoscale the thermal fluctuations are very strong and give rise to stress fluctuations in the MPa-range, which is similar to the depinning stresses which typically occur at solid-rubber interfaces, indicating the crucial importance of thermal fluctuations for rubber friction on smooth surfaces. We develop a detailed model which takes into account the influence of thermal fluctuations on the depinning of small contact patches (stress domains) at the rubber-substrate interface. The theory predicts that the velocity dependence of the macroscopic shear stress has a bell-shaped f orm, and that the low-velocity side exhibits the same temperature dependence as the bulk viscoelastic modulus, in qualitative agreement with experimental data. Finally, we discuss the influence of small-amplitude substrate roughness on rubber sliding friction.Comment: 14 pages, 16 figure

    Self healing slip pulses along a gel/glass interface

    Full text link
    We present an experimental evidence of self-healing shear cracks at a gel/glass interface. This system exhibits two dynamical regimes depending on the driving velocity : steady sliding at high velocity (> Vc = 100-125 \mu m/s), caracterized by a shear-thinning rheology, and periodic stick-slip dynamics at low velocity. In this last regime, slip occurs by propagation of pulses that restick via a ``healing instability'' occuring when the local sliding velocity reaches the macroscopic transition velocity Vc. At driving velocities close below Vc, the system exhibits complex spatio-temporal behavior.Comment: 4 pages, 6 figure

    On slip pulses at a sheared frictional viscoelastic/ non deformable interface

    Full text link
    We study the possibility for a semi-infinite block of linear viscoelastic material, in homogeneous frictional contact with a non-deformable one, to slide under shear via a periodic set of ``self-healing pulses'', i.e. a set of drifting slip regions separated by stick ones. We show that, contrary to existing experimental indications, such a mode of frictional sliding is impossible for an interface obeying a simple local Coulomb law of solid friction. We then discuss possible physical improvements of the friction model which might open the possibility of such dynamics, among which slip weakening of the friction coefficient, and stress the interest of developing systematic experimental investigations of this question.Comment: 23 pages, 3 figures. submitted to PR

    Molecular-kinetic theory of polymer friction

    No full text
    corecore