304 research outputs found

    Photometric catalog of nearby globular clusters (I)

    Get PDF
    We present the first part of the first large and homogeneous CCD color-magnitude diagram (CMD) data base, comprising 52 nearby Galactic globular clusters (GGC) imaged in the V and I bands using only two telescopes (one for each hemisphere). The observed clusters represent 75% of the known Galactic globulars with (m-M)v<=16.15 mag, cover most of the globular cluster metallicity range (-2.2 <= [Fe/H] <= -0.4), and span Galactocentric distances from ~1.2 to ~18.5 kpc. In this paper, the CMDs for the 39 GGCs observed in the southern hemisphere are presented. The remaining 13 northern hemisphere clusters of the catalog are presented in a companion paper. For four clusters (NGC 4833, NGC 5986, NGC 6543, and NGC 6638) we present for the first time a CMD from CCD data. The typical CMD spans from the 22nd V magnitude to the tip of the red giant branch. Based on a large number of standard stars, the absolute photometric calibration is reliable to the ~0.02 mag level in both filters. This catalog, because of its homogeneity, is expected to represent a useful data base for the measurement of the main absolute and relative parameters characterizing the CMD of GGCs.Comment: 34 pages, 108 figures, Astronomy & Astrophysics Supplement Series, in press. Full resolution figures can be obtained from the authors upon reques

    Chemical composition of the stellar cluster Gaia1: No surprise behind Sirius

    Get PDF
    Indexación: Web of Science; Scopus.We observed six He-clump stars of the intermediate-Age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton-And neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.https://www.aanda.org/articles/aa/abs/2017/07/aa31009-17/aa31009-17.htm

    The Calcium Triplet metallicity calibration for galactic bulge stars

    Full text link
    We present a new calibration of the Calcium II Triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and in general it is especially suited for solar and supersolar metallicity giants, typical of external massive galaxies. About 150 bulge K giants were observed with the GIRAFFE spectrograph at VLT, both at resolution R~20,000 and at R~6,000. In the first case, the spectra allowed us to perform direct determination of Fe abundances from several unblended Fe lines, deriving what we call here high resolution [Fe/H] measurements. The low resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near infrared Calcium II triplet at 8542 and 8662 A. By comparing the two measurements we derived a relation between Calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, -1<[Fe/H]<+0.7. By adding a small second order correction, based on literature globular cluster data, we derived the unique calibration equation [Fe/H]CaT=−3.150+0.432W′+0.006W′2_{CaT} = -3.150 + 0.432W' + 0.006W'^2, with a rms dispersion of 0.197 dex, valid across the whole metallicity range -2.3<[Fe/H]<+0.7.Comment: Accepted for publication in A&

    Anomaluos RR Lyrae (V-I)_0 colors in Baade's Window

    Full text link
    We compare (V-I)_0-(V-K)_0 color-color and (V-I)_0-log P period-color diagrams for Baade's Window and local RRab Lyrae stars. We find that for a fixed log P the Baade's Window RR Lyrae stars are ~0.17 magnitudes redder in (V-I)_0 than the local RR Lyrae stars. We also show that there is no such effect observed in (V-K)_0. We argue that an extinction misestimate towards Baade's Window is not a plausible explanation of the discrepancy. Unlike Baade's Window RR Lyrae stars, the local ones follow a black-body color-color relation and are well approximated by theoretical models. We test two parameters, metallicity and surface gravity, and find that their effects are too small to explain the (V-I)_0 discrepancy between the two groups of stars. We do not provide any explanation for the anomalous (V-I)_0 behavior of the Baade's Window RR Lyrae stars. We note that a similar effect for clump giant stars has been recently reported by Paczynski and we caution that RR Lyrae stars and clump giants, often used as standard candles, can be subject to the same type of systematics.Comment: 10 pages, 7 figures, submitted to Ap

    The distance to the Fornax dwarf galaxy using red clump stars, and the discrepancy between red clump and tip of the red giant branch distances

    Get PDF
    I determine a distance to the Fornax dwarf galaxy using stars in the red clump and at the tip of the red giant branch. They are in very good agreement, with μ0=20.66mag\mu_0 = 20.66 mag. Comparing the magnitudes of the tip of the red giant branch and of the red clump in Fornax, Carina and the Magellanic Clouds, I propose a possible solution to the problem of the discrepancy between these two types of distance measurements.Comment: To appear in ApJ

    The young stellar population at the center of NGC 205

    Full text link
    Context. NGC 205 is a peculiar dwarf elliptical galaxy hosting in its center a population of young blue stars. Their origin is still matter of debate, the central fresh star formation activity possibly being related to dynamical interactions between NGC 205 and M31. Aims. The star formation history in the central 30\arcsec (∼\sim120 pc) around the NGC 205 central nucleus is investigated in order to obtain clues to the origin of the young stellar population. Methods. Deep HST/ACS CCD photometry is compared with theoretical isochrones and luminosity functions to characterize the stellar content of the region under study and compute the recent SF rate. Results. Our photometry reveals a previously undetected blue plume of young stars clearly distinguishable down to I≃\simeq26. Our analysis suggests that 1.9×105\times10^5 M⊙_\odot were produced between approximately 62 Myr and 335 Myr ago in the NGC 205 inner regions, with a latest minor episode occurring ∼\sim25 Myr ago. This implies a star formation rate of ∼7×10−4\sim7\times10^{-4} M⊙_\odot/yr over this period. Conclusions. The excellent fit of the observed luminosity function of young main sequence stars obtained with a model having a constant star formation rate argues against a tidally triggered star formation activity over the last ∼\sim300 Myr. Rather, a constant SF may be consistent with NGC 205 being on its first interaction with M 31.Comment: 5 pages, 2 figures, accepted for publication in A&A letter

    Galactic Globular Cluster Relative Ages

    Get PDF
    Based on a new large, homogeneous photometric database of 35 Galactic globular clusters (GGCs), a set of distance and reddening independent relative age indicators has been measured. The observed D(V-I)_2.5 and D(V)(HB-TO) vs. metallicity relations have been compared with the relations predicted by two recent updated libraries of isochrones. Using these models and two independent methods, we have found that self-consistent relative ages can be estimated for our GGC sample. Based on the relative age vs. metallicity distribution, we conclude that: (a) there is no evidence of an age spread for clusters with [Fe/H]<-1.2, all the clusters of our sample in this range being old and coeval; (b) for the intermediate metallicity group (-1.2<=[Fe/H]<-0.9) there is a clear evidence of age dispersion, with clusters up to ~25% younger than the older members; and (c) the clusters within the metal rich group ([Fe/H]>=-0.9) seem to be coeval within the uncertainties (except Pal12), but younger (~17%) than the bulk of the Galactic globulars. The latter result is totally model dependent. From the distribution of the GGC ages with the Galactocentric distance, we can present a possible scenario for the Milky Way formation: The GC formation process started at the same zero age throughout the halo, at least out to ~20 kpc from the Galactic center. According to the present stellar evolution models, the metal-rich globulars are formed at a later time (~ 17% lower age). And finally, significantly younger halo GGCs are found at any R(GC)>8 kpc. For these, a possible scenario associated with mergers of dwarf galaxies to the Milky Way is suggested.Comment: 47 pages, 9 figures. To be published in the Astronomical Journal, November issu
    • …
    corecore