210 research outputs found

    Annexin I and dexamethasone effects on phospholipase and cyclooxygenase activity in human synoviocytes.

    Get PDF
    Annexin I is a glucocorticoid-induced mediator with anti-inflammatory activity in animal models of arthritis. We studied the effects of a bioactive annexin I peptide, ac 2-26, dexamethasone (DEX), and interleukin-1beta (IL-1beta) on phospholipase A2 (PLA2) and cyclooxygenase (COX) activities and prostaglandin E2 (PGE2) release in cultured human fibroblast-like synoviocytes (FLS). Annexin I binding sites on human osteoarthritic (OA) FLS were detected by ligand binding flow cytometry. PLA2 activity was measured using 3H-arachidonic acid release, PGE2 release and COX activity by ELISA, and COX2 content by flow cytometry. Annexin I binding sites were present on human OA FLS. Annexin I peptide ac 2-26 exerted a significant concentration-dependent inhibition of FLS constitutive PLA2 activity, which was reversed by IL-1beta. In contrast, DEX inhibited IL-1beta-induced PLA2 activity but not constitutive activity. DEX but not annexin I peptide inhibited IL-1beta-induced PGE2 release. COX activity and COX2 expression were significantly increased by IL-1beta. Annexin I peptide demonstrated no inhibition of constitutive or IL-1beta-induced COX activity. DEX exerted a concentration-dependent inhibition of IL-1beta-induced but not constitutive COX activity. Uncoupling of inhibition of PLA2 and COX by annexin I and DEX support the hypothesis that COX is rate-limiting for PGE2 synthesis in FLS. The effect of annexin I but not DEX on constitutive PLA2 activity suggests a glucocorticoid-independent role for annexin I in autoregulation of arachidonic acid production. The lack of effect of annexin I on cytokine-induced PGE2 production suggests PGE2-independent mechanisms for the anti-inflammatory effects of annexin I in vivo

    Cafeteria diet-induced obesity causes oxidative damage in white adipose

    Get PDF
    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods – the “cafeteria” diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet–fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes

    Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV) proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP), glycoprotein 1 (GP1), and glycoprotein 2 (GP2).</p> <p>Results</p> <p>Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP) fusions in the Rosetta strains of <it>Escherichia coli </it>(<it>E. coli</it>) using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC). Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF) against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA).</p> <p>Conclusion</p> <p>These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.</p

    The effect of dietary intervention on the metabolic and behavioural impairments generated by short term high fat feeding in the rat

    Get PDF
    AbstractPrevious studies have shown that rats fed a high calorie diet rich in saturated fat for 12weeks exhibit peripheral insulin resistance and impairments of behavioural flexibility when switched from an operant delayed matching to place (DMTP) schedule to a delayed non-matching to place (DNMTP) schedule. However, the metabolic changes evoked by feeding a high fat (HF) diet can be observed within two weeks of commencing the diet. The current study has confirmed that 4weeks exposure to an HF diet resulted in increased body weight, peripheral insulin resistance and plasma leptin. Studies performed during weeks 3 and 4 on the HF diet revealed suppressed lever pressing rates and impaired behavioural flexibility in the operant DMTP/DNMTP task. When animals fed the HF diet were then returned to a standard chow (SC) diet for 5weeks their weight and blood biochemistry no longer differed from those measured in animals that had never been exposed to the HF diet. The animals restored to the SC diet exhibited a clear ability to acquire the DNMTP schedule of reinforcement although these animals continued to lever press at a lower rate when compared with animals that received the SC diet throughout. The data suggest that exposure to an HF diet diminishes the motivation to respond for a reward and, thus, the capacity to adapt behavioural performance. This deficit was ameliorated, but not totally reversed, by the dietary intervention. If also true for humans, the results suggest that deficits in behavioural flexibility develop after only a short period on a high calorie diet but may be largely reversible through simple dietary intervention, at least in the early stages of deficit development. However, the putative effects of short-term exposure to an HF diet on behavioural motivation may persist for some time after switching to a healthier low fat diet and remain a problem for those seeking to adopt a healthier diet

    Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer

    Get PDF
    We conducted a preoperative window study of metformin in endometrial cancer (EC) patients and evaluated its antiproliferative, molecular and metabolic effects. Twenty obese women with endometrioid EC were treated with metformin (850mg) daily for up to 4weeks prior to surgical staging. Expression of the proliferation marker Ki-67, estrogen receptor (ER), progesterone receptor (PR), adenosine monophosphate-activated protein kinase (AMPK), and downstream targets of the mammalian target of rapamycin (mTOR) pathway were measured by immunohistochemistry. Global, untargeted metabolomics analysis of serum pre- and postmetformin treatment, and matched tumor, was performed. Metformin reduced proliferation by 11.75% (P=0.008) based on the comparison of pre- and posttreatment endometrial tumors. A total of 65% of patients responded to metformin as defined by a decrease in Ki-67 staining in their endometrial tumors post-treatment. Metformin decreased expression of phosphorylated (p)-AMPK (P=0.00001), p-Akt (P=0.0002), p-S6 (51.2%, P=0.0002), p-4E-BP-1 (P=0.001), and ER (P=0.0002) but not PR expression. Metabolomic profiling of serum indicated that responders versus nonresponders to treatment were more sensitive to metformin's effects on induction of lipolysis, which correlated with increased fatty acid oxidation and glycogen metabolism in matched tumors. In conclusion, metformin reduced tumor proliferation in a pre-operative window study in obese EC patients, with dramatic effects on inhibition of the mTOR pathway. Metformin induced a shift in lipid and glycogen metabolism that was more pronounced in the serum and tumors of responders versus nonresponders to treatment.This study provides support for therapeutic clinical trials of metformin in obese patients with EC

    Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

    Get PDF
    OBJECTIVE: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MΊs). Broadly speaking, MΊs dependent on glucose are pro-inflammatory, classically activated MΊs (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MΊs that primarily metabolize fatty acids are alternatively activated MΊs (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum in vivo dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct MΊ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis. METHODS: Bone marrow derived MΊs (BMDMs) from Fatp1 (-/-) and Fatp1 (+/+) mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 (Fatp1 (B-/-)) and controls Fatp1 (B+/+). Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 MΊ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. RESULTS: Fatp1 is downregulated with pro-inflammatory stimulation of MΊs. Fatp1 (-/-) BMDMs and FATP1-OE RAW 264.7 MΊs demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. Fatp1 (B-/-) chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed Fatp1 (B+/+) controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of Fatp1. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation in vitro. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in MΊs and modulated lipid mediator metabolism in MΊs. CONCLUSION: Our findings provide evidence that FATP1 is a novel regulator of MΊ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1 (B-/-) mice. In contrast, gain of FATP1 activity in MΊs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated

    Metabolomic Profiling Reveals Mitochondrial-Derived Lipid Biomarkers That Drive Obesity-Associated Inflammation

    Get PDF
    Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome

    Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway

    Get PDF
    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n=9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma (PPARg) and components of the insulin-signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P=0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P=0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific

    Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    Get PDF
    Background: Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results: The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their postsettlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion: Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes
    • 

    corecore