17 research outputs found

    The Rhyacophila fasciata Group in Europe: Rhyacophila fasciata Hagen 1859 and formerly synonymized species (Trichoptera: Rhyacophilidae), with new description of Rhyacophila fasciata and Rhyacophila septentrionis McLachlan 1865 (stat. prom.).

    Get PDF
    [EN] The presence and distribution of Rhyacophila fasciata Hagen 1859 in Europe were revised, based on bibliographic study, collection specimens, and new material collected in different countries. The status of formerly synonymized species, Rhyacophila ferruginea (Scopoli 1763) and Rhyacophila septentrionis McLachlan 1865 was also assessed. The type of R. ferruginea is missing, the taxon is still unidentified, and thus we propose Rhyacophila ferruginea as a nomen dubium. Morphological features and genetic evidence revealed that R. septentrionis differs from R. fasciata, so we propose to change its status to status resurrectus. We therefore include new descriptions of the different stages (larva, pupa, male, and female) of R. fasciata and of R. septentrionis, together with a molecular analysis based on mitochondrial cytochrome oxidase I (mtCOI) and ecological notes. The species R. coppai Oláh 2020 NEW SYNONYM and R. soreda Coppa & Oláh 2020 NEW SYNONYM are synonyms of R. sociata Navás 1916; the species R. kopasa Oláh & Coppa 2020 NEW SYNONYM and R. rova Oláh & Coppa 2020 NEW SYNONYM are synonyms of R. denticulata McLachlan 1879; the species R. matrensis Oláh & Szcz¿sny 2020 is probably a synonym of R. fasciata, so more study of this species is needed in order to confirm or deny that it is a valid species.[ES] Se ha revisado la presencia y distribución de Rhyacophila fasciata Hagen 1859 en Europa, basada en el estudio de la bibliografía, especímenes de colecciones y en nuevo material recolectado en diferentes países. Se evaluó asimismo el estado de las especies anteriormente sinonimizadas Rhyacophila ferruginea (Scopoli 1763) y Rhyacophila septentrionis McLachlan, 1865. El ejemplar tipo de R. ferruginea se ha perdido y el taxón permanece todavía sin identificar, por lo que proponemos Rhyacophila ferruginea como un nomen dubium. Las características morfológicas y las evidencias genéticas indican que R. septentrionis difiere de R. fasciata, por lo que proponemos un cambio de estatus a status resurrectus. Se incluyen nuevas descripciones de las distintas etapas (larva, pupa, machos y hembras) de R. fasciata y de R. septentrionis, junto con el análisis molecular del gen mitocondrial Citocromo Oxidasa subunidad I (COImt), y notas ecológicas. Las especies R. coppai Oláh 2020 NUEVO SINÓNIMO y R. soreda Coppa & Oláh 2020 NUEVO SINÓNIMO son sinónimos de R. sociata Navás 1916; las especies R. kopasa Oláh & Coppa 2020 NUEVO SINÓNIMO y R. rova Oláh & Coppa 2020 NUEVO SINÓNIMO son sinónimos de R. denticulata McLachlan 1879; la especie R. matrensis Oláh & Szcz¿sny 2020 es probablemente un sinónimo de R. fasciata, por lo que se necesita un estudio más detallado para confirmarla o rechazarla como especie válida.This research is a part of scientific project “DNA barcoding of Croatian faunal biodiversity” (IP-2016-06-9988) funded by the Croatian Science Foundation. The work of P. Chvojka was supported by the Ministry of Culture of the Czech Republic (DKRVO 2019-2023/5.I.b, National Museum, 00023272)

    The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    Get PDF
    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life’s species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.</p

    ddRAD sequencing sheds light on low interspecific and high intraspecific mtDNA divergences in two groups of caddisflies

    No full text
    Abstract Large-scale global efforts on DNA barcoding have repeatedly revealed unexpected patterns of variability in mtDNA, including deep intraspecific divergences and haplotype sharing between species. Understanding the evolutionary causes behind these patterns calls for insights from the nuclear genome. While building a near-complete DNA barcode library of Finnish caddisflies, a case of barcode-sharing and some cases of deep intraspecific divergences were observed. In this study, the Apatania zonella (Zetterstedt, 1840) group and three Limnephilus Leach, 1815 species were studied using double digest RAD sequencing (ddRAD-seq), morphology, and DNA barcoding. The results support the present species boundaries in the A. zonella group species. A morphologically distinct but mitogenetically nondistinct taxon related to parthenogenetic Apatania hispida (Forsslund, 1930) got only weak support for its validity as a distinct species. The morphology and genomic-scale data do not indicate cryptic diversity in any of the three Limnephilus species despite the observed deep intraspecific divergences in DNA barcodes. This demonstrates that polymorphism in mtDNA may not reflect cryptic diversity, but mitonuclear discordance due to other evolutionary causes
    corecore