11,846 research outputs found

    On the stability and growth of single myelin figures

    Full text link
    Myelin figures are long thin cylindrical structures that typically grow as a dense tangle when water is added to the concentrated lamellar phase of certain surfactants. We show that, starting from a well-ordered initial state, single myelin figures can be produced in isolation thus allowing a detailed study of their growth and stability. These structures grow with their base at the exposed edges of bilayer stacks from which material is transported into the myelin. Myelins only form and grow in the presence of a driving stress; when the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional reference

    Role of gauge invariance in B -> V gamma radiative weak decays

    Full text link
    The role of gauge invariance in calculating B -> V gamma radiative weak decays is clarified. It is shown that the gauge invariance severely restricts the contributions mediated by the usual weak non-leptonic Hamiltonian dominated by u and c quaks with one photon attachment. Such contributions are found to be almost negligible.Comment: 5 pages, Revtex, no figure

    Spin-orbit coupling induced by a mass gradient

    Get PDF
    The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradient across the interfaces results in a SOC which competes with the SOC created by the electric field in the valence band. However, in graded quantum wells subjected to an external electric field, the mass-gradient induced SOC can be finite even when the electric field in the valence band vanishes.Comment: 4 pages, 2 figures, 1 tabl

    High-energy particles associated with solar flares

    Get PDF
    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena

    Identifying cross country skiing techniques using power meters in ski poles

    Get PDF
    Power meters are becoming a widely used tool for measuring training and racing effort in cycling, and are now spreading also to other sports. This means that increasing volumes of data can be collected from athletes, with the aim of helping coaches and athletes analyse and understanding training load, racing efforts, technique etc. In this project, we have collaborated with Skisens AB, a company producing handles for cross country ski poles equipped with power meters. We have conducted a pilot study in the use of machine learning techniques on data from Skisens poles to identify which "gear" a skier is using (double poling or gears 2-4 in skating), based only on the sensor data from the ski poles. The dataset for this pilot study contained labelled time-series data from three individual skiers using four different gears recorded in varied locations and varied terrain. We systematically evaluated a number of machine learning techniques based on neural networks with best results obtained by a LSTM network (accuracy of 95% correctly classified strokes), when a subset of data from all three skiers was used for training. As expected, accuracy dropped to 78% when the model was trained on data from only two skiers and tested on the third. To achieve better generalisation to individuals not appearing in the training set more data is required, which is ongoing work.Comment: Presented at the Norwegian Artificial Intelligence Symposium 201

    The role of the lattice structure in determining the magnon-mediated interactions between charge carriers doped into a magnetically ordered background

    Full text link
    We use two recently proposed methods to calculate exactly the spectrum of two spin-12{1\over 2} charge carriers moving in a ferromagnetic background, at zero temperature, for three types of models. By comparing the low-energy states in both the one-carrier and the two-carrier sectors, we analyze whether complex models with multiple sublattices can be accurately described by simpler Hamiltonians, such as one-band models. We find that while this is possible in the one-particle sector, the magnon-mediated interactions which are key to properly describe the two-carrier states of the complex model are not reproduced by the simpler models. We argue that this is true not just for ferromagnetic, but also for antiferromagnetic backgrounds. Our results question the ability of simple one-band models to accurately describe the low-energy physics of cuprate layers.Comment: 15 pages, 10 figure

    Sharpening mT2m_{T2} cusps: the mass determination of semi-invisibly decaying particles from a resonance

    Get PDF
    We revisit mass determination techniques for the minimum symmetric event topology, namely XX pair production followed by X→ℓNX \to \ell N, where XX and NN are unknown particles with the masses to be measured, and NN is an invisible particle, concentrating on the case where XX is pair produced from a resonance. We consider separate scenarios, with different initial constraints on the invisible particle momenta, and present a systematic method to identify the kinematically allowed mass regions in the (mN,mX)(m_N, m_X) plane. These allowed regions exhibit a cusp structure at the true mass point, which is equivalent to the one observed in the mT2m_{T2} endpoints in certain cases. By considering the boundary of the allowed mass region we systematically define kinematical variables which can be used in measuring the unknown masses, and find a new expression for the mT2m_{T2} variable as well as its inverse. We explicitly apply our method to the case that XX is pair produced from a resonance, and as a case study, we consider the process pp→A→χ~1+χ~1−pp \to A \to \tilde \chi_1^+ \tilde \chi_1^-, followed by χ~1±→ℓ± ν~ℓ\tilde \chi_1^\pm \to \ell^{\pm} \, \tilde \nu_{\ell}, in the Minimal Supersymmetric Standard Model and show that our method provides a precise measurement of the chargino and sneutrino masses, mXm_X and mNm_N, at 14 TeV14 \, \mathrm{TeV} LHC with 300 fb−1300 \, \mathrm{fb}^{-1} luminosity.Comment: 18 pages, 13 figures, version 2 updated to JHEP 06 (2014) 17

    Kondo Temperature in Multilevel Quantum Dots

    Full text link
    We develop a general method to evaluate the Kondo temperature in a multilevel quantum dot that is weakly coupled to conducting leads. Our theory reveals that the Kondo temperature is strongly enhanced when the intradot energy-level spacing is comparable to or smaller than the charging energy. We propose an experiment to test our result, which consists of measuring the size-dependence of the Kondo temperature.Comment: 4 pages, 1 figure and supplementary material. Revised and improved version, to appear in Phys. Rev. Let

    Kˉ∗\bar K^* meson in dense matter

    Full text link
    We study the properties of Kˉ∗\bar K^* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the Kˉπ\bar K \pi decay channel in matter. The in-medium Kˉ∗N\bar K^* N interaction accounts for Pauli blocking effects and incorporates the Kˉ∗\bar K^* self-energy in a self-consistent manner. We also obtain the Kˉ∗\bar K^* (off-shell) spectral function and analyze its behaviour at finite density and momentum. At normal nuclear matter density, the Kˉ∗\bar K^* meson feels a moderately attractive potential while the Kˉ∗\bar K^* width becomes five times larger than in free space. We estimate the transparency ratio of the γA→K+K∗−A′\gamma A \to K^+ K^{* -} A^\prime reaction, which we propose as a feasible scenario at present facilities to detect the changes of the properties of the Kˉ∗\bar K^* meson in the nuclear medium.Comment: 26 pages, 9 figures, one new section added, version published in Phys. ReV. C, http://link.aps.org/doi/10.1103/PhysRevC.82.04521
    • …
    corecore