76 research outputs found

    Simultaneous optical, CUTLASS HF radar, and FAST spacecraft observations: signatures of boundary layer processes in the cusp

    No full text
    International audienceIn this paper we discuss counterstreaming electrons, electric field turbulence, HF radar spectral width enhancements, and field-aligned currents in the southward IMF cusp region. Electric field and particle observations from the FAST spacecraft are compared with CUTLASS Finland spectral width enhancements and ground-based optical data from Svalbard during a meridional crossing of the cusp. The observed 630nm rayed arc (Type-1 cusp aurora) is associated with stepped cusp ion signatures. Simultaneous counterstreaming low-energy electrons on open magnetic field lines lead us to propose that such electrons may be an important source for rayed red arcs through pitch angle scattering in collisions with the upper atmosphere. The observed particle precipitation and electric field turbulence are found to be nearly collocated with the equatorward edge of the optical cusp, in a region where CUTLASS Finland also observed enhanced spectral width. The electric field turbulence is observed to extend far poleward of the optical cusp. The broad-band electric field turbulence corresponds to spatial scale lengths down to 5m. Therefore, we suggest that electric field irregularities are directly responsible for the formation of HF radar backscatter targets and may also explain the observed wide spectra. FAST also encountered two narrow highly structured field-aligned current pairs flowing near the edges of cusp ion steps. Key words. Ionosphere (electric fields and currents). Magnetosphere physics (magnetopause, cusp, and boundary layers; auroral phenomena

    Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: superposed epoch analysis and case studies

    Get PDF
    Magnetic pulsations in the Pc1-Pc2 frequency range (0.1-5 Hz) are often observed on the ground and in the Earth's magnetosphere during the aftermath of geomagnetic storms. Numerous studies have suggested that they may play a role in reducing the fluxes of energetic ions in the ring current; more recent studies suggest they may interact parasitically with radiation belt electrons as well. We report here on observations during 2005 from search coil magnetometers and riometers installed at three Antarctic stations, Halley (-61.84 degrees magnetic latitude, MLAT), South Pole (-74.18 degrees MLAT), and McMurdo (-79.96 degrees MLAT), and from energetic ion detectors on the NOAA Polar-orbiting Operational Environment Satellites (POES). A superposed epoch analysis based on 13 magnetic storms between April and September 2005 as well as case studies confirm several earlier studies that show that narrowband Pc1-Pc2 waves are rarely if ever observed on the ground during the main and early recovery phases of magnetic storms. However, intense broadband Pi1-Pi2 ULF noise, accompanied by strong riometer absorption signatures, does occur during these times. As storm recovery progresses, the occurrence of Pc1-Pc2 waves increases, at first in the daytime and especially afternoon sectors but at essentially all local times later in the recovery phase (typically by days 3 or 4). During the early storm recovery phase the propagation of Pc1-Pc2 waves through the ionospheric waveguide to higher latitudes was more severely attenuated. These observations are consistent with suggestions that Pc1-Pc2 waves occurring during the early recovery phase of magnetic storms are generated in association with plasmaspheric plumes in the noon-to-dusk sector, and these observations provide additional evidence that the propagation of waves to ground stations is inhibited during the early phases of such storms. Analysis of 30- to 250-keV proton data from four POES satellites during the 24-27 August and 18-19 July 2005 storm intervals showed that the location of the inner edge of the ring current matched well with the plasmapause model of O'Brien and Moldwin (2003). However, the POES data showed no evidence of the consequences of electromagnetic ion cyclotron waves (localized proton precipitation) during main and early recovery phase. During later stages of the recovery phase, when such precipitation was observed, it was coincident with intense wave events at Halley, and it occurred at L shells near or up to 1 RE outside the modeled plasmapause but well equatorward of the isotropy boundary

    Attribute Evaluation using Neighbour Functions

    No full text
    Design and implementation of attribute evaluators has received considerable attention ever since Knuth formulated the concept of attribute grammars. In particular, the class of Ordered Attribute Grammars (OAGs) has been of particular interest because practical and efficient attribute evaluators can been implemented based on the statically determined fixed plans for such grammars. Two main categories of attribute evaluators for OAGs can be distinguished in the literature: those that directly execute these plans and those that are implemented as functional programs, called visit-functions, derived from these plans. Incremental versions of these evaluators rely on extra machinery to achieve incremental behaviour. We report on a new functional approach, based on neighbour functions, also derived from fixed plans, which allows attribute re-evaluation to start in the context of the node of subtree replacement, and which can readily be extended to achieve efficient incremental behaviour
    • …
    corecore