61 research outputs found

    Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells

    Get PDF
    Therapies targeting cancer metastasis are challenging owing to the complexity of the metastatic process and the high number of effectors involved. Although tumour hypoxia has previously been associated with increased aggressiveness as well as resistance to radio- and chemotherapy, the understanding of a direct link between the level and duration of hypoxia and the individual steps involved in metastasis is still missing. Using live imaging in a chick embryo model, we have demonstrated that the exposure of neuroblastoma cells to 1% oxygen for 3 days was capable of (1) enabling cell migration towards blood vessels, (2) slowing down their velocity within blood vessels to facilitate extravasation and (3) promoting cell proliferation in primary and secondary sites. We have shown that cells do not have to be hypoxic anymore to exhibit these acquired capabilities as a long-term memory of prior hypoxic exposure is kept. Furthermore, non-hypoxic cells can be influenced by neighbouring hypoxic preconditioned cells and be entrained in the metastatic progression. The acquired aggressive phenotype relies on hypoxia-inducible factor (HIF)-dependent transcription of a number of genes involved in metastasis and can be impaired by HIF inhibition. Altogether, our results demonstrate the need to consider both temporal and spatial tumour heterogeneity because cells can 'remember' an earlier environment and share their acquired phenotype with their close neighbours. As a consequence, it is necessary to monitor the correct hypoxic markers to be able to predict the consequences of the cells' history on their behaviour and their potential response to therapies

    Quantum Dots Do Not Affect the Behaviour of Mouse Embryonic Stem Cells and Kidney Stem Cells and Are Suitable for Short-Term Tracking

    Get PDF
    Quantum dots (QDs) are small nanocrystals widely used for labelling cells in order to enable cell tracking in complex environments in vitro, ex vivo and in vivo. They present many advantages over traditional fluorescent markers as they are resistant to photobleaching and have narrow emission spectra. Although QDs have been used effectively in cell tracking applications, their suitability has been questioned by reports showing they can affect stem cell behaviour and can be transferred to neighbouring cells. Using a variety of cellular and molecular biology techniques, we have investigated the effect of QDs on the proliferation and differentiation potential of two stem cell types: mouse embryonic stem cells and tissue-specific stem cells derived from mouse kidney. We have also tested if QDs released from living or dead cells can be taken up by neighbouring cells, and we have determined if QDs affect the degree of cell-cell fusion; this information is critical in order to assess the suitability of QDs for stem cell tracking. We show here that QDs have no effect on the viability, proliferation or differentiation potential of the two stem cell types. Furthermore, we show that the extent of transfer of QDs to neighbouring cells is <4%, and that QDs do not increase the degree of cell-cell fusion. However, although the QDs have a high labelling efficiency (>85%), they are rapidly depleted from both stem cell populations. Taken together, our results suggest that QDs are effective cell labelling probes that are suitable for short-term stem cell tracking

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Initiation à la microélectronique ultime CMOS

    No full text
    Dans cet article, nous présentons un projet proposé en 1ère année de master et permettant d'appréhender le contexte de la microélectronique CMOS, avec en particulier les enjeux actuels de la miniaturisation des composants. Pour cela, les étudiants mettent en oeuvre des logiciels de simulation physique de transistors et pratiquent la réalisation technologique de structures élémentaires en salle blanche, objets qui sont ensuite caractérisés électriquement

    The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating its Localisation, Stability and Activity

    No full text
    The hypoxia signalling pathway enables adaptation of cells to decreased oxygen availability. When oxygen becomes limiting, the central transcription factors of the pathway, hypoxia-inducible factors (HIFs), are stabilised and activated to induce the expression of hypoxia-regulated genes, thereby maintaining cellular homeostasis. Whilst hydroxylation has been thoroughly described as the major and canonical modification of the HIF-&amp;alpha; subunits, regulating both HIF stability and activity, a range of other post-translational modifications decorating the entire protein play also a crucial role in altering HIF localisation, stability, and activity. These modifications, their conservation throughout evolution and their effects on HIF-dependent signalling are discussed in this review.</jats:p

    The role of hypoxia-inducible factor post-translational modifications in regulating its localisation, stability, and activity

    Get PDF
    Abstract The hypoxia signalling pathway enables adaptation of cells to decreased oxygen availability. When oxygen becomes limiting, the central transcription factors of the pathway, hypoxia-inducible factors (HIFs), are stabilised and activated to induce the expression of hypoxia-regulated genes, thereby maintaining cellular homeostasis. Whilst hydroxylation has been thoroughly described as the major and canonical modification of the HIF-α subunits, regulating both HIF stability and activity, a range of other post-translational modifications decorating the entire protein play also a crucial role in altering HIF localisation, stability, and activity. These modifications, their conservation throughout evolution, and their effects on HIF-dependent signalling are discussed in this review
    corecore