112 research outputs found

    Preliminary report on the microvertebrate faunal remains from the late triassic locality at Krasiejów, SW Poland

    Get PDF
    Fossil vertebrate remains from the Keuper unit in the vicinity of the village of Krasiejów have been analyzed for almost two decades. However, the main goal of these works was focused mainly on large vertebrates. Here the authors present the first description of microvertebrate fossils from that site. The collection of around 5,000 specimens is mainly comprised of teeth and scales. The most numerous remains belong to osteichthyans: dipnoans (Ptychoceratodus and cf. Arganodus), palaeoniscids, semionotids, redfieldiids and chondrichthyans, such as Lonchidion sp., which is the first indisputable record of that genus in the Upper Triassic of Poland and the first shark at the Krasiejów locality. Tetrapod fossils consist of temnospondyl amphibians, rhynchocephalian lepidosauromorphs and archosauromorphs. Among them, temnospondyl amphibian remains are the most numerous and are represented mostly by Metoposaurus. However, on the basis of diversity in tooth morphotypes, the occurrence of other taxa cannot be excluded. Rhynchocephalians are composed of 7 fragmentary jaw morphotypes with dentition, which could indicate high taxonomic diversity (cf. Planocephalosaurus, cf. Diphydontosaurus and cf. Clevosaurus). The most varied fossil group was assigned to the archosauromorphs. The authors can distinguish at least 19 teeth morphotypes, which show similarities to the dentition of: protorosaurians (cf. Tanystropheidae), pseudosuchians (cf. Protecovasaurus, cf. Revueltosaurus), early crocodylomorphs and basal sauropodomorph dinosaurs. The first occurrence of a theropod dinosaur and cynodonts at the Krasiejów locality is also recorded. However, their remains are very rare. These new records show a high taxonomic diversity at the Krasiejów locality that contributes to our deeper understanding of Late Triassic ecosystem of Poland.publishersversionpublishe

    Near-optimum universal graphs for graphs with bounded degrees (Extended abstract)

    Get PDF
    Let H be a family of graphs. We say that G is H-universal if, for each H ∈H, the graph G contains a subgraph isomorphic to H. Let H(k, n) denote the family of graphs on n vertices with maximum degree at most k. For each fixed k and each n sufficiently large, we explicitly construct an H(k, n)-universal graph Γ(k, n) with O(n2−2/k(log n)1+8/k) edges. This is optimal up to a small polylogarithmic factor, as Ω(n2−2/k) is a lower bound for the number of edges in any such graph. En route, we use the probabilistic method in a rather unusual way. After presenting a deterministic construction of the graph Γ(k, n), we prove, using a probabilistic argument, that Γ(k, n) is H(k, n)-universal. So we use the probabilistic method to prove that an explicit construction satisfies certain properties, rather than showing the existence of a construction that satisfies these properties. © Springer-Verlag Berlin Heidelberg 200

    The Impact of a Sparse Migration Topology on the Runtime of Island Models in Dynamic Optimization

    Get PDF
    Island models denote a distributed system of evolutionary algorithms which operate independently, but occasionally share their solutions with each other along the so-called migration topology. We investigate the impact of the migration topology by introducing a simplified island model with behavior similar to (Formula presented.) islands optimizing the so-called Maze fitness function (Kötzing and Molter in Proceedings of parallel problem solving from nature (PPSN XII), Springer, Berlin, pp 113–122, 2012). Previous work has shown that when a complete migration topology is used, migration must not occur too frequently, nor too soon before the optimum changes, to track the optimum of the Maze function. We show that using a sparse migration topology alleviates these restrictions. More specifically, we prove that there exist choices of model parameters for which using a unidirectional ring of logarithmic diameter as the migration topology allows the model to track the oscillating optimum through nMaze-like phases with high probability, while using any graph of diameter less than (Formula presented.) for some sufficiently small constant (Formula presented.) results in the island model losing track of the optimum with overwhelming probability. Experimentally, we show that very frequent migration on a ring topology is not an effective diversity mechanism, while a lower migration rate allows the ring topology to track the optimum for a wider range of oscillation patterns. When migration occurs only rarely, we prove that dense migration topologies of small diameter may be advantageous. Combined, our results show that the sparse migration topology is able to track the optimum through a wider range of oscillation patterns, and cope with a wider range of migration frequencies

    Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs

    Full text link
    General upper tail estimates are given for counting edges in a random induced subhypergraph of a fixed hypergraph H, with an easy proof by estimating the moments. As an application we consider the numbers of arithmetic progressions and Schur triples in random subsets of integers. In the second part of the paper we return to the subgraph counts in random graphs and provide upper tail estimates in the rooted case.Comment: 15 page

    Ring Migration Topology Helps Bypassing Local Optima

    Full text link
    Running several evolutionary algorithms in parallel and occasionally exchanging good solutions is referred to as island models. The idea is that the independence of the different islands leads to diversity, thus possibly exploring the search space better. Many theoretical analyses so far have found a complete (or sufficiently quickly expanding) topology as underlying migration graph most efficient for optimization, even though a quick dissemination of individuals leads to a loss of diversity. We suggest a simple fitness function FORK with two local optima parametrized by r2r \geq 2 and a scheme for composite fitness functions. We show that, while the (1+1) EA gets stuck in a bad local optimum and incurs a run time of Θ(n2r)\Theta(n^{2r}) fitness evaluations on FORK, island models with a complete topology can achieve a run time of Θ(n1.5r)\Theta(n^{1.5r}) by making use of rare migrations in order to explore the search space more effectively. Finally, the ring topology, making use of rare migrations and a large diameter, can achieve a run time of Θ~(nr)\tilde{\Theta}(n^r), the black box complexity of FORK. This shows that the ring topology can be preferable over the complete topology in order to maintain diversity.Comment: 12 page

    Moderate deviations via cumulants

    Full text link
    The purpose of the present paper is to establish moderate deviation principles for a rather general class of random variables fulfilling certain bounds of the cumulants. We apply a celebrated lemma of the theory of large deviations probabilities due to Rudzkis, Saulis and Statulevicius. The examples of random objects we treat include dependency graphs, subgraph-counting statistics in Erd\H{o}s-R\'enyi random graphs and UU-statistics. Moreover, we prove moderate deviation principles for certain statistics appearing in random matrix theory, namely characteristic polynomials of random unitary matrices as well as the number of particles in a growing box of random determinantal point processes like the number of eigenvalues in the GUE or the number of points in Airy, Bessel, and sin\sin random point fields.Comment: 24 page

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    Neutral H density at the termination shock: a consolidation of recent results

    Full text link
    We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 \pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 \pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 \pm 0.04 cm-3.Comment: Submitted to Space Science Review
    corecore