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Abstract Islandmodels denote a distributed system of evolutionary algorithmswhich
operate independently, but occasionally share their solutions with each other along the
so-called migration topology. We investigate the impact of the migration topology by
introducing a simplified island model with behavior similar to λ islands optimizing
the so-called Maze fitness function (Kötzing and Molter in Proceedings of parallel
problem solving from nature (PPSN XII), Springer, Berlin, pp 113–122, 2012). Pre-
vious work has shown that when a complete migration topology is used, migration
must not occur too frequently, nor too soon before the optimum changes, to track
the optimum of the Maze function. We show that using a sparse migration topology
alleviates these restrictions. More specifically, we prove that there exist choices of
model parameters for which using a unidirectional ring of logarithmic diameter as
the migration topology allows the model to track the oscillating optimum through n
Maze-like phases with high probability, while using any graph of diameter less than
c ln n for some sufficiently small constant c > 0 results in the island model losing
track of the optimum with overwhelming probability. Experimentally, we show that
very frequent migration on a ring topology is not an effective diversity mechanism,
while a lower migration rate allows the ring topology to track the optimum for a wider
range of oscillation patterns. When migration occurs only rarely, we prove that dense
migration topologies of small diameter may be advantageous. Combined, our results
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show that the sparse migration topology is able to track the optimum through a wider
range of oscillation patterns, and cope with a wider range of migration frequencies.

Keywords Evolutionary algorithms · Island models · Dynamic problems ·
Populations · Runtime analysis

1 Introduction

Optimization problems are often dynamic in nature, as the environment in which they
have to be solved may change with the passing of time. Nature-inspired algorithms
are based on approaches to solving optimization problems observed in nature, and
we might therefore hope that they would also provide a reasonable solution to coping
with dynamic changes in optimization problems. The performance of nature-inspired
algorithms on dynamic problems has been considered in the literature [1,19], including
a number of runtime analyses of evolutionary algorithms on dynamic problems [3,5,8–
10,20].

In a dynamic optimization problem, the optimum is allowed to move in the search
space over time, as conditions of the problem change. The goal of the optimization
algorithm is then not only to locate the optimum once, as in the case of static opti-
mization problems, but also be able to track the optimum as it moves, maintaining
good solutions over time.

With the emergence of massively parallel computer architectures, parallel imple-
mentations of nature-inspired algorithms have become increasingly popular. A
wide-spread approach called island models runs several instances of the same
algorithm, the so-called islands, in parallel, with synchronization and exchange of
information controlled by the length of the so-calledmigration interval. The topology
of the network describing the information exchange is called migration topology. It is
empirically well known [2,21] that both the choice of migration interval and topology
are crucial for the performance of the island model.

Despite the huge empirical knowledge, theoretical studies of the impact of the
parameters of island models have only recently been published. Lässig and Sud-
holt [12] presents an example where the proper choice of the migration interval
provably speeds up the runtime by an exponentially large factor. Mambrini and Sud-
holt [18] proposes an adaption scheme for the choice of the migration intervals and
present a framework for theoretical runtime bounds. Lissovoi and Witt [17] is one of
the few works showing the utility of island models on an in fact dynamic optimiza-
tion problem from a theoretical perspective. The dynamic problem considered there
isMaze, a pseudo-Boolean fitness function.

TheMaze function, first introduced in [11], is an artificial fitness function defined
over n-bit strings. It consists of n + 1 long phases, over the course of which the
optimum slowly shifts from the all-ones bit string to the all-zeros bit string, while
oscillating between two specific solutions during each phase. In [11], it is shown that a
simple (1+1) EA is not able to track the oscillating optimum through all n+1 phases.
Subsequentwork [15,17] has considered howvarious diversitymechanisms impact the
ability of evolutionary algorithms to track the optimum of this function, observing that
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an islandmodel can provide the necessary diversity as long as migration on a complete
migration topology does not occur too frequently (or too rarely), and never occurs
too close to a Maze phase transition—conditions which require somewhat specific
knowledge of the fitness function, which may not be available for other problems.

In this paper, we investigate whether using a less dense migration topology, such
as a unidirectional ring, can be beneficial on a dynamic problem likeMaze, allowing
some of the requirements on when migration is allowed to occur to be relaxed. The
Maze construction requires an EA to keep an individual that is sometimes sub-optimal
in the population in order to efficiently handle phase transitions; thus, maintaining
population diversity is a desirable property for an island model on this function. Intu-
itively, decreasing the density of the migration topology weakens the negative effect
of migration on population diversity, and may allow the desirable solution to survive
migration occurring at inopportune times. Therefore, it is interesting to study whether
this intuition can be supported by rigorous proofs. To come up with such proofs, it is
necessary to present a well-defined example where the choice of the topology has a
crucial impact on the optimization process.While our example will clearly support the
intuition described above, it is still challenging to carry out a proof due to the amount
and complexity of interaction and stochasticity in both algorithm and island model.

We have based our analysis on a simplified version of the island model studied
in [17], which incorporates the major elements of the original setting: an oscillat-
ing fitness function, islands performing independent mutation/selection steps, and the
effect of Maze phase transitions on the islands’ ability to track the optimum based
on their current-best individuals at the time of the transition. The simplified model
incorporates more randomization, as both the oscillating pattern and migration are
randomized, which both simplifies the analysis, and disallows some of the more arti-
ficial solutions possible in the original model, such as only performing migrations on
iterations that assign a higher fitness value to the desirable solution.

Using this simplifiedmodel,we use rigorous analysis to prove that the unidirectional
ring migration topology allows the island model to track the optimum of the dynamic
fitness functions in some settings where the complete migration topology and all other
topologies of less than logarithmic diameter do not. We also present a converse result
which applies if migration does not occur frequently enough.

This paper is structured as follows. In the next section, we introduce the simplified
islandmodel, highlighting its key differences by comparing it to the setting of [17], and
introduce some of the tools used in subsequent proofs. Sections 3.1 and 3.2 consider
the case of migration occurring in every iteration, the former proving that a complete
migration topology aswell as any topology of diameter less than c ln n for a sufficiently
small constant c > 0, leads to a failure to track the optimum, while the latter proves
that switching to the unidirectional ring topology of diameter c′ ln n for a sufficiently
large constant c′ > 0 allows tracking the optimum with high probability. Hence, there
is a sharp threshold for the topology’s diameter under which no efficient tracking is
possible. Experimental results for the ring topology investigate the diversity of the
population in the setting of frequent migration.

Sections 4.1 and 4.2 consider the effects of very infrequent migrations, proving
that in such settings, a denser migration topology may aid in tracking the oscillating
optimum. The positive result for the unidirectional ring is finally extended to the case
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Table 1 The Maze dynamic fitness function: in n oscillating phases after an initial OneMax phase, two
bit strings, OPT p and ALT p are assigned higher-than-OneMax fitness values

Phase 0 1 2 3 … n − 1 n > n

OPTp (1n ) 011n−1 021n−2 031n−3 … 0n−11 0n (0n )

ALTp 1n 011n−1 021n−2 … 0n−212 0n−111

The optimum oscillates in an OPT p–OPT p–ALT p pattern, with f (OPT p) > f (ALT p) two iterations out
of three. After phase n, only 0n has a higher-than-OneMax fitness value

of moderately frequent migration (instead of occurring in every iteration) in Sect. 5.
We finish with some conclusions, as well as a discussion of further possibilities for
analysis.

2 Preliminaries

The Maze fitness function, defined formally below, and summarized in Table 1, was
introduced in [11]. It is an artificial real-valued fitness function consisting of n + 1
phases of t0 = kn3 iterations each (where k > 0 is a constant). Over the course of
these phases the optimum shifts from the all-ones bit string, which is the optimum
up to time t0, to the all-zeros bit string, which is the optimum after time (n + 1)t0,
while the majority of the search space still points towards the local optimum at the
all-ones bit string. Within each phase, the optimum oscillates frequently between two
specific solutions, which we will denote by OPTp and ALTp for each phase p. These
solutions maintain a higher fitness value than the rest of the search points throughout
the phase. Notably, OPTp = ALTp+1, and so if an island has the OPTp individual
during a phase transition, it is able to maintain a solution with a higher fitness value
compared to the rest of the search space, and will not accept mutations taking it back
to the all-ones bit string.

Formally, the Maze fitness function, defined for x ∈ {0, 1}n and t ∈ N0, is:

Maze(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 2 if t ≥ (n + 1) · t0 ∧ x = 0n

n + 2 if t ≥ t0 ∧ t < (n + 1) · t0 ∧ x = OPT(t)
n + 1 if t ≥ t0 ∧ t < (n + 1) · t0 ∧ x = ALT(t)
OneMax(x) otherwise

OPT(t) =
{
OPT�t/t0� if t mod 3 �= 0
ALT�t/t0� otherwise

ALT(t) =
{
ALT�t/t0� if t mod 3 �= 0
OPT�t/t0� otherwise

OPTp = 0p1n−p for 1 ≤ p ≤ n

ALTp = 0p−11n−p+1 for 1 ≤ p ≤ n

where OneMax(x) = ∑n
i=1 xi , i.e. the number of bits set to 1, and t is the time at

which the evaluation occurs.
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We note that the function was used in [11] to show that ant colony-based algorithms
can be preferable to evolutionary algorithms such as the (1+1) EA on dynamic prob-
lems, as the rapid oscillation between pairs of similar optima in each phase can more
easily be represented using a pheromone memory (versus the single ancestor indi-
vidual of a (1+1) EA). While the Maze function and the simplified model that we
will analyze are artificial constructions, similar effects may occur in real-world prob-
lems: noisy fitness functions might provide uncertain information about which of two
good solutions is better, which can cause oscillation between the two solutions; while
changing environment conditions can be similar to the phase transitions of the Maze
slowly moving the global optimum through the search space.

In order to analyze the impact of the migration topology on the island model behav-
ior, and remove some of the artifacts arising from the Maze fitness function (such as
the ability to recover the oscillating optimum via a few unlikely mutations following
a phase transition where no island has the OPT individual), we will construct a some-
what simplified model of the optimization algorithm, while maintaining similarities
to λ islands using (1+1) EAs to optimize Maze. The simplified model is shown as
Algorithm 1 below and explained in the following.

Some changes have been made to the model of the Maze fitness function. In
Algorithm 1, islands can be in one of three states, OPT, ALT, and LOST, with each
iteration randomly selectingwhich ofOPT andALThas a higher fitness value, favoring
OPToverALT independently probability pOPT.When aMaze phase transition occurs,
all islands in the OPT state transition to the ALT state, while all other islands transition
to the LOST state, regardless of which state was favored during the iteration. The
OPT, ALT, and LOST states correspond to having OPT, ALT, and OneMax-valued
individuals in the original Maze, where the OPT individual in each phase becomes
the ALT individual of the next phase, while the ALT individual becomes a OneMax-
valued individual following a phase transition, even if theALT individual was assigned
a higher fitness value in the iteration immediately before the phase transition.

We now elaborate on the island model in more detail. Each island i behaves like a
simplified (1+1) EA, maintaining a current-best solution x∗

i (t) by applying mutation
and selection.

The mutation operator is simplified as specified below:

mutate(x) =
⎧
⎨

⎩

ALT with probability pmut if x = OPT
OPT with probability pmut if x = ALT
x otherwise

which essentially prevents an island in the LOST state from mutating to OPT or ALT.
Notably, the selection operator on each island compares the fitness of the mutated
offspring to that of its ancestor, so only mutations that improve the current solution
would be accepted.

With an appropriate choice of pmut based on a probability of a specific single-bit
mutation occurring, this choice of mutation and selection operators is a pessimistic
model of the (1+1) EA’s behavior on Maze, where, in the later phases, beginning
a phase with a OneMax-valued individual (i. e., in the LOST state in the simplified
model) would cause the (1+1) EA to revert to optimizing OneMax with at least

123



Algorithmica

constant probability, leaving it with an overwhelmingly small probability of finding
the oscillating optimum again [11].

Additionally, migration is randomized by allowing it to occur in each iteration
independently at random with probability pmig. This, as well as the randomization of
which of ALT and OPT is favored in any given iteration, prevents migration policies
from being able to only perform migration during OPT-favoring iterations.

Algorithm 1 Simplified island model for Maze with a directed graph G = (V,A)

used as the migration topology.
Initialize x∗

i (0) ← OPT for all i ∈ V .
for t ← 0, 1, 2, . . . do

With probability pOPT, y+ ← OPT, y− ← ALT; otherwise, vice versa.
M ← bernoulli(pmig) � Does migration occur now?
for all i ∈ V in parallel do

Ni ←
{ {x∗

i (t)} ∪ {x∗
j (t) | ( j, i) ∈ A} if M = 1

{x∗
i (t)} otherwise

x ′
i ←

⎧
⎨

⎩

y+ if y+ ∈ Ni
y− if y+ /∈ Ni ∧ y− ∈ Ni
LOST otherwise

� Select best ancestor

x ′′
i ←

⎧
⎨

⎩

y+ with probability pmut if x ′
i = y−

y− with probability pmut if x ′
i = y+

x ′
i otherwise

� Mutate ancestor

x∗
i (t + 1) ←

⎧
⎨

⎩

y+ if y+ ∈ {x ′
i , x

′′
i }

y− if y− ∈ {x ′
i , x

′′
i } ∧ y+ /∈ {x ′

i , x
′′
i }

LOST otherwise
� Keep best solution

if t mod t0 = (t0 − 1) then � A phase transition occurs
for all i ∈ V do

x∗
i (t + 1) ←

{
ALT if x∗

i (t + 1) = OPT
LOST otherwise

Summarized concisely, Algorithm 1models λ islands performingmutation in every
iteration, each one updating its current-best individual x∗

i (t + 1) while the dynamic
fitness function oscillates randomly assigning higher fitness values to OPT and ALT.
When migration occurs, each island receives the previous iteration’s current-best indi-
viduals fromall of the islands that are connected to it by a directed edge in themigration
topology G = (V,A), and uses the best of these individuals and its own x∗

i (t) as the
ancestor for the current iteration (evaluating all candidates according to the current
iteration). Thus, the parameters of the simplified model are:

– n, the number of phases being considered,
– t0, the number of iterations in each phase,
– pOPT, the probability of OPT having a higher fitness value thanALT in an iteration,
– pmut, the probability of constructing OPT from ALT and vice versa,
– pmig, the probability of migration occurring in an iteration,
– λ, the number of islands,
– G = (V,A), a directed graph specifying the migration topology, with V being
the set of vertices (islands, and therefore |V | = λ), and A a set of directed arcs
specifying how migration transfers current-best individuals.
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In this paper, we consider the impact of themigration topologyG on the algorithm’s
ability to track the oscillating OPT/ALT optimum (more specifically, whether at least
one island remains in a non-LOST state after n oscillating phases).

The following choice of parameters yields a setting similar to the original Maze
considered in [11,17]: t0 = n3, pOPT = 2/3, λ = Ω(log n), pmut = Θ(1/n),
pmig = 1/τ (where τ is the deterministic migration interval), and G = Kλ. In [11],
t0 = kn3 for a constant k > 0 is used to provide an ant colony-based algorithm with
sufficient time to adjust its pheromone memory. We somewhat relax the conditions on
the parameter t0 in our results, requiring most often that it is in Ω(n2) and polynomial
with respect to n. Generally, using a constant 1/2 < pOPT < 1 allows the ant colony
to adjust to the solution useful in the next iteration.

It is worth noting that in the original Maze setting, n serves as both the number
of bits the individuals are composed of, and the number of oscillating phases in the
Maze function. This motivates the relationship between n, pmut, and λ which persists
even in the simplified setting: although the simplified setting no longer deals with n-bit
strings directly, it is still serving as a model for islands using actual (1+1) EAs and
hence also the standard bitwise mutation operator on n-bit strings.

To derive our theoretical results,we use the following drift theorem,which describes
the expectation of the first-hitting time of a process in the presence of additive drift.

Theorem 1 (Additive drift, expected time [7,13]) Let (Xt )t≥0, be a stochastic process
over a bounded state space S ⊆ R

+
0 , andFt a filtration to which the stochastic process

is adapted (e.g., the natural filtration) and let T0 := min{t ≥ 0 : Xt = 0} denote the
first hitting time of 0 and assume that both E

(
X0

)
and E

(
T0 | X0

)
are finite. Then, if

E
(
Xt − Xt+1 | Ft ; Xt > 0

)
≥ ε,

it holds that E
(
T0 | X0

) ≤ X0/ε.

To bound the probability of large deviations, the following theorem dealing with
tail bounds on sums of geometrically distributed random variables is useful.

Theorem 2 (Theorem 1.14 in [4]) Let p ∈ ]0, 1[. Let X1, . . . , Xn be independent
geometric random variables with Pr(Xi = j) = (1 − p) j−1 p for all j ∈ N and let
X := ∑n

i=1 Xi .
Then for all δ > 0

Pr(X ≥ (1 + δ)E(X)) ≤ e− δ2
2

n−1
1+δ

Additionally, the classical gambler’s ruin problem [6] is used to bound the proba-
bility that a process that shrinks in expectation grows to a particular size in Lemma 7.
In the canonical setting, this would be equivalent to determining the probability that
a gambler who starts with a single coin is able to collect a certain number of coins in
an unfair coin flipping game, e. g., where he is more likely to lose a coin than win a
coin in each round.
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Theorem 3 ([6], p. 345)Consider an unfair coin flipping game, where in every round,
independently of previous rounds, p �= 1/2 is the probability of winning one coin and
q = 1− p is the probability of losing a coin. Starting with a coins, the probability of
reaching n > a before reaching 0 coins equals

(q/p)a − 1

(q/p)n − 1
.

Notation Wedenote by log x the binary logarithmof x andby ln x the natural logarithm
of x . If the logarithm is multiplied by an unknown constant, which is equivalent to an
unknown base of the logarithm, we prefer to write log x , e. g., O(log x) and c log x .

We say that an event E occurs with high probability (with respect to the problem
size n) if, for some constant c > 0, P(E) = 1 − O(n−c).

3 Frequent Migration

As a simple case, consider setting pmig = 1, i. e., requiring migration to occur in every
iteration. We consider two types of topologies: topologies with small diameter up to
c1 log n for some sufficiently small constant c1 > 0, and an example of a topology
with diameter λ = c2 log n for a sufficiently large constant c2 > 0, namely a λ-vertex
unidirectional ring. Together, these results show that the topology’s diameter is crucial
for the islandmodel to track the optimum. In fact, we prove that there a sharp threshold
behavior in the domain Θ(log n) w. r. t. the diameter values allowing efficient tracking
of the optimum.

3.1 Topologies with Small Diameter

We first prove that using a small-diameter topology with migration occurring in every
iteration results in the simplified model being unable to track the optimum of the
Maze through all n phases. The types of topologies considered here include dense
graphs such as the extreme case of complete graphs (the special case analyzed in our
preliminary work [16]) but also very sparse graphs such as a star graph.

Theorem 4 When t0 ∈ Ω(n) ∩ O(poly(n)), 0 < pOPT < 1 is a constant, pmut =
1/(en), pmig = 1, λ = O(n), and G is λ-vertex connected graph of diameter at most
c1 log n for a sufficiently small constant c1 log n, the probability that all islands are
in the LOST state after n · t0 iterations is 1 − 2−Ω(n1−ε ). Here ε = ε(c1) is a positive
constant that can be made arbitrarily small if c1 is chosen appropriately.

Proof Let k denote the diameter of the graph. We note that between every pair of
vertices there is a path of length at most k since the graph is assumed to be connected.
The proof will analyze the probability of the ALT state spreading through the whole
graph in a sequence of k iterations. That is, assuming migration to occur in every
of the k iterations and ALT being the optimum, we consider the event that an ALT
state residing at some vertex reaches all vertices of distance i within the first i of these
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iterations such that inductively all vertices of distance i+1 are reachedwithin iteration
i + 1.

We note that at least one mutation occurs during a phase with at least a constant
probability:

1 − (1 − pmut)
λt0 ≥ 1 − e−c,

and the probability that no mutation occurs in a single iteration is also at least a
constant:

(1 − pmut)
λ ≥ e−c′

,

where c > 0 and c′ > 0 are constants.
Thus, with at least probability (1 − e−c)e−c′k ≥ e−c′′c1 log n for some constant

c′′ > 0, the last mutation in a phase occurs at least k + 1 iterations before the phase
transition. With probability (1 − pOPT)k+2 ≥ e−c′′′c1 log n , for some constant c′′′ > 0,
both the iteration when the last mutation occurs, and all the iterations immediately
following it favorALT overOPT; thus, if all islandswere in theOPT state, themutation
would produce anALT individual which wouldmigrate to all islands in the subsequent
k iterations, while if at least one island was in the ALT state, its original individual
wouldmigrate to all other islands in the subsequent k iterations. As no furthermutation
occurs before the phase transition,we conclude that each phase has at least a probability
e−(c′′+c′′′)c1 log n of ending with all islands having the ALT individual, and thus losing
track of the oscillating optimum following the next phase transition.

Thus, if each of n phases has at least a probability of failing e−(c′+c′′)c1 log n , the
probability that at least one of n phases ends with all islands in the LOST state is at
least 1 − (1 − e−(c+c′)c1 log n)n = 1 − 2−Ω(n1−ε ) if the constant c1 is chosen small
enough. ��

It is worth noting that this proof approach is flexible enough to be adapted to settings
where migration occurs less often, such as once in every constant number of iterations.
The proof of Theorem 4 essentially relies on no mutations occurring and ALT being
preferred throughout a sequence of k + 1 migrating steps before the phase transition.
Suppose pOPT is at most a constant smaller than 1, and c′k steps, for a sufficiently
large constant c′ > 0, contain at least k migrations. Then, with probability e−c′′k for a
sufficiently large constant c′′ > 0 (depending on c′ and pOPT), migration propagates
the ALT state to all islands, and the model becomes LOST in the subsequent phase
transition. Choosing the implicit constant in k small enough, we arrive again at a
probability of 1 − 2−Ω(n1−ε ) of losing track of the optimum.

3.2 Unidirectional Ring Topology with Sufficiently Large Diameter

Wesuppose now thatG has a sufficiently large diameter by beingminimally connected,
i. e., G is a unidirectional ring of λ vertices and λ arcs. This reduces the effect of
migration on the island memory, making it impossible to propagate an undesirable
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individual to all islands in a single migration. In this section, we will prove that the
simplified island model is able to track the oscillating optimum for the full n phases.

Theorem 5 When t0 ∈ Ω
(
n2

) ∩ O(poly(n)), pOPT = 1/2 + ε for some constant
ε > 0, pmut = 1/(en), pmig = 1, λ = c log n, where c > 0 is a sufficiently large
constant, and G is a λ-vertex unidirectional ring, the simplified island model is able
to track the oscillating optimum for at least n phases with high probability.

We will prove this by showing that as long as each phase begins with at least one
island still tracking the optimum, the phase will end with at least one island i having
x∗
i (t) = OPT. Roughly speaking, Lemma 6 first proves the number of OPT-islands to
grow to λ within a phase, whereafter Lemma 7 states that this number does not drop
to 0 in the remainder of the phase, both with high probability.

Notably, for the results any constant pOPT > 1/2 is sufficient, including the choice
pOPT = 2/3 corresponding to the oscillation pattern of the original Maze.

Lemma 6 Let, as in the setting of Theorem 5, t0 ∈ Ω
(
n2

) ∩ O(poly(n)), pOPT =
1/2 + ε for some constant ε > 0, pmut = 1/(en), pmig = 1, λ = c log n, where
c > 0 is a sufficiently large constant, and G be a λ-vertex unidirectional ring. If a
phase begins with at least one island i having x∗

i (t ′) �= LOST, there will with high
probability exist an iteration t ′′ ≥ t ′ before the phase ends such that all islands will
have x∗

i (t ′′) = OPT.

Proof We note that after at most λ iterations, no islands will be in the LOST state,
as λ iterations are enough to migrate the non-LOST individual from any surviving
island to all other islands, with fewer iterations being required if there is more than
one surviving island.

Let t ′ be the iteration during which no islands are in the LOST state, and consider
the drift in Xt , the number of islands i having x∗

i (t + t ′) = ALT. Let St be the number
of arcs (u, v) ∈ A in the migration topology for which it holds that x∗

u (t + t ′) = OPT
and x∗

v (t + t ′) = ALT, i. e., the number of segments in the unidirectional ring of the
migration topology which are composed of islands having OPT as their current-best
solution.Wenote that, regardless ofwhich solution is favoredwhen amigration occurs,
St islands will change their current-best solution because of migration—there are St
segments ofOPT islands in themigration topology; the first island in each segmentwill
receive ALT through migration, while the islands following each segment will receive
OPT through migration, so regardless of which solution is favored in an iteration,
migration will cause St islands to switch state. The remaining islands, if they are in
the non-favored state, may change their current-best solution through mutation. The
expected change in Xt is a combination of these effects:

E(Xt − Xt+1 | Xt < λ, St )

≥ pOPT
(
pmig St + pmut (Xt − St )

)

− (1 − pOPT)
(
pmig St + pmut (λ − Xt − St )

)

> 2 pOPT pmig St − pmig St − pmut λ = Ω(1)
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where the inequalities reflect lower-bounding the positive contribution of mutation as
0, upper-bounding (λ − Xt − St ) < λ in the negative contribution of mutation, and
recalling that pmig = 1, 2pOPT > 1 and λ ∈ o(1/pmut).

When the iteration begins with no islands in the OPT or LOST states, a drift toward
Xt = 0 exists,

E(Xt − Xt+1 | Xt = λ) = pOPT pmut λ = 2c log n

3en
,

and can be used as a lower bound on the overall drift throughout the whole process.
Applying the additive drift theorem, the expected first hitting time T = min{t : Xt =

0} = O(λ/
2c log n
3en ) = O(n). As this is much shorter than the phase length t0 ∈

Ω(n2), we can conclude that Xt = 0 is hit during the phase with high probability (by
applying a Markov bound on the probability that the first hitting time exceeds twice
the expectation, and repeating the argument n times), and hence at least at some point
during the phase, all islands have OPT as their current-best solution. ��

We now need to show that it is not likely that the island model will manage to
replace OPT with ALT on all islands during the remainder of the current phase.

Lemma 7 Let t0 ∈ Ω
(
n2

) ∩ O(poly(n)), pOPT = 1/2 + ε for some constant ε > 0,
pmut = 1/(en), pmig = 1,λ = c log n, where c > 0 is a sufficiently large constant, and
G be a λ-vertex unidirectional ring. If there occurs an iteration where x∗

i (t) = OPT
for all islands, then, with high probability, at least one island will be in a non-LOST
state following the next phase transition.

Proof We note that it is difficult to apply a negative drift theorem directly in this
setting, as the drift would depend on St : if there are many OPT/ALT boundaries in
the migration topology, migration may cause drastic changes in the number of islands
having OPT as their current-best individual. Instead, our strategy is to bound the
number of islands having ALT as their current-best individual by considering the
effects of each OPT-to-ALT mutation that occurs in isolation, i. e., as if it created the
only ALT segment around at any specific time. An upper bound on the total number
of islands having ALT as their current-best solution at any specific time can then be
derived from bounds on the maximum length each isolated ALT segment may reach,
the number of iterations isolated ALT segments survive, and the rate at which such
segments are created.

When considered in isolation, an OPT-to-ALT mutation creates an ALT segment
with initial length 1 in the migration topology. We only consider its length to be
modified by migration: it increases by 1 if migration occurs during an ALT-favoring
iteration, and decreases by 1 if migration occurs during an OPT-favoring iteration;
any further OPT-to-ALT mutations would be treated as separate isolated segments,
and pessimistically, no ALT-to-OPT mutations occur within the ALT segment. There
is a tendency towards decreasing the length. Instead of a drift theorem, here we even
can directly apply results on the classical gambler’s ruin problem (Theorem 3) to
bound themaximum length of such an isolated segment: it decreaseswith probability at
least 1/2+ε, as pOPT = 1/2+ε, themaximal possible change is by1 in either direction,
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and the probability of increasing is at most 1/2− ε. Let r := (1/2+ ε)/(1/2− ε) and
note that r is a constant greater than 1. Thus, using the ruin problem on {0, . . . , �}with
starting state 1, the probability that the length of an ALT segment exceeds � = c′ log n,
where c′ > 0 is constant is no more than

r1 − 1

r� − 1
≤ r−�+1 = O(n−c′

). (1)

Next, consider the number of iterations before migration reduces a freshly-created
ALT segment to length 0. This can be upper-bounded using a tail bound on the binomial
distribution: the segment is guaranteed to be reduced to length 0 if, in 2k iterations, at
least k favor OPT. Let X2k be the number of iterations that favor OPT of 2k iterations:

P(X2k ≤ k) ≤ exp

(

−2k(1/2 + ε)

3

(
ε

1 + ε

)2
)

= e−Ω(k)

using Chernoff’s inequality with δ = ε/(1 + ε) and recalling pOPT = 1/2 + ε.
Setting also k = c′ log n for large enough but constant c′ > 0, we conclude that, with
probability 1−n−Ω(c′), an OPT-to-ALTmutation disappears after O(log n) iterations.
In total, the expected number of OPT-to-ALT mutations within a phase is at most
(1 − pOPT) pmut λ t0 = O(t0 log(n)/n) since pmut = 1/(ne), so by a straightforward
union bound on the probabilities of anALT segment surviving for longer than O(log n)

iterations, none of the OPT-to-ALT mutations that occur in the considered interval
survive for more than the desired number of iterations with high probability. Here we
assume that c′ is chosen large enough that the total failure probability in the phase of
t0 steps is smaller than any given probability 1/nd for some constant d > 0.

Finally, we need to show that the rate at which OPT-to-ALTmutations are accepted
is low enough to allow any accepted mutations to dissolve through migration without
overrunning the island model. To that end, we can bound Yk , the number of OPT-
to-ALT mutations that are accepted within k = c′ log n iterations using a Chernoff
bound:

E(Yk) < k λ pmut = O((log2 n)/n) = o(1)

P(Yk ≥ c′ ln n) ≤ e−c′ ln n = n−c′

recalling that λ = O(log n), pmut = 1/(ne), and ignoring the possibility that some
of these mutations occur during iterations which assign a higher fitness value to OPT,
and therefore would not be accepted.

Thus, nomore than c′ ln nOPT-to-ALTmutations are accepted during a c′ log n iter-
ation period with high probability, and all accepted mutations disappear after c′ log n
iterations with high probability. By dividing the Maze phase into blocks of c′ log n
iterations each, as illustrated in Fig. 1, we can conclude that with high probability, at
most 2·c′ log n = O(log n)OPT-to-ALT segments can be active at the same time: with
high probability, no more than c′ log n appear at the exact end of an c′ log n iteration
block, and no more than c′ log n appear during the next block, with the former group
all being reduced to length 0 before the next-next block begins.
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Iterations
block of c logn iterations

at most k accepted ALT
mutations per block

each mutation survives at most c logn iterations

Fig. 1 Lemma 7: the oscillating phase is divided into blocks of c′ log n iterations; with high probability,
no more than k = c′ ln n OPT-to-ALT mutations are accepted within each block, each one creating an ALT
segment that disappears after at most c′ log n iterations with high probability. Thus, with high probability,
at most 2k ALT segments may be active at the same time

We are finally ready to bound the total number of islands that can have ALT as
their best-so-far individual at the same time: denoting by s the number of segments
consisting of ALT-individuals, we define Li as the length of the i th segment. We are
interested in S := ∑s

i=1 Li , which is the total number of ALT-islands. By (1), we
have P(Li ≥ j) ≤ r− j+1, independently from the other segments. Hence, Li −
1 is stochastically dominated by a geometrically distributed random variable with
parameter 1/r and S − s is dominated by the sum of s such random variables. We
assume s ≤ 2c′ log n, which, as argued before, holds with high probability. Now we
can apply Theorem 2 on the sum of geometric random variables, choosing δ = 3,

and get that P(S ≥ s + (8c′ log n)/r) ≤ e− 9(2c′ log n−1)
8 ≤ n−c′

. Altogether, for a
sufficiently large n and a sufficiently large constant c from the lemma, there will with
high probability still be an island with x∗

i (t) = OPT at the end of the phase, and hence
will be in a non-LOST state following the phase transition. ��

We note that the bounds used in Lemma 7 take a very dim view of the situation, and
could probably be improved significantly. In practical simulations, such as the exper-
iments presented in Sect. 3.3, we observe that the simplified island model converges
to a larger-than-pOPT majority of islands having OPT as their current-best solution,
and any OPT-to-ALT mutations disappear quickly.

Applying Lemmas 6 and 7 inductively over n phases yields a proof of Theorem 5.

Proof (of Theorem 5) For the first iteration, Lemma 7 may be applied immediately,
as all islands are initialized with the OPT individual. Per the lemma, at least one
island i ends the phase with x∗

i (t) = OPT with high probability, allowing Lemma 6
to be applied at the beginning of the next phase. Per that lemma, there is with high
probability an iteration within the phase when OPT is the current-best individual on
all islands, allowing Lemma 7 to be applied again.

As the events described in both of these lemmas occur with high probability, and we
only require n repeated applications of each lemma to cover the whole optimization
process, a simple union bound on the failure probabilities can be used to conclude that
with high probability, at least one island is still tracking the oscillating optimum after
the n phases are over. ��
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Thus, we have proven that using a unidirectional ring of diameter c ln n for suffi-
ciently large constant c > 0 as the migration topology can allow the simplified island
model to track the oscillating optimum of the Maze in settings where this is not pos-
sible for the complete migration topology. Intuitively, this is achieved by removing
the ability of a single ill-timed migration to propagate an undesirable individual to all
islands. Together with the result from Sect. 3.1, we have determined a sharp thresh-
old around Θ(log n) for the diameter of the topology which is necessary to track the
optimum.

3.3 Experimental Results

While Theorem 5 proves that constant migration on a sufficiently-large ring topology
can track the optimum of theMaze through n phase transitions by showing that, with
high probability, there is at least one island in the OPT state at the end of a phase, it
does not provide an upper bound on the expected number of islands in the OPT state
at the end of the phase, and requires pOPT > 1/2 for its proof. This condition on pOPT
is used in Lemmas 6 and 7 to show that there is a drift towards recovering OPT islands
after a phase transition, and any OPT-to-ALT mutations are quickly undone.

An interesting question to consider experimentally is whether the combination of
constant migration and a ring migration topology is an effective diversity-preserving
mechanism. If the islandswere to split betweenOPTandALT states according to pOPT,
it might also be possible to track the optimum also for a constant 0 < pOPT ≤ 1/2. If,
on the other hand, these migration parameters only ensure that the simplified island
model detects that pOPT > 1/2, and keeps a far greater number of islands in the OPT
state, tracking the optimum for smaller pOPT values would likely be impossible.

We examine this issue experimentally, by simulating the simplified island model
following a particularly bad phase transition, with only a single island surviving in the
ALT state. 1000 independent simulations of this setting are performed, with λ = 100
islands and pmut = 1/2000 chosen to model the typical relationship between λ =
c log n islands and pmut = 1/(en) probability of transitioning between the states via
mutation, making state transitions due to mutation relatively rare, while maintaining a
reasonable time limit on the number of iterations to simulate. We note that we stop the
simulation after 2000 iterations (with no phase transition occurring); a typical choice
of t0 = n3 would require significantly more iterations.

The results are shown in Fig. 2. With λ = 100, pmut = 1/2000, and pmig = 1, the
simplified island model appears to reach a steady state less than 1000 iterations after
the simulated phase transition, with an average of 99.91 islands in the OPT state, and
an observed standard deviation of around 0.60; similarly, after 1000 iterations have
elapsed, the worst of the 1000 simulations always has at least 82 islands in the OPT
state, with an average of around 92.

Overall, the simulation suggests that constant migration using a ring topology will
in expectation result in the islandmodel converging to the favored optimum, rather than
maintaining an equilibrium close to pOPT. This suggests that when pOPT < 1/2, this
choice of migration parameters will not be able to reliably track the Maze optimum.
This is illustrated in the experimental results presented in Fig. 3, which shows the same

123



Algorithmica

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

20

40

60

80

100

Iteration

Is
la
nd

s
w
it
h
x

∗
=

O
P
T

Mean
Minimum

Fig. 2 1000 simulations of an island system with λ = 100 islands running the simplified island model,
using a unidirectional ring as the migration topology, and pmig = 1, pOPT = 2/3, pmut = 1/2000,
initialized with a single island in the ALT state at iteration 1, and all remaining islands in the LOST state.
The plot shows the average (mean) number of islands in the OPT state, standard deviation from this mean
(shaded blue region), and the minimum observed number of OPT islands at a given iteration across the
1000 simulations (Color figure online)

setting with pOPT = 1/2 simulated for 8000 iterations following the phase transition:
the variance on the number of islands in the OPT state remains high, implying that
instead of having the simulations converge on having an approximately even split of
islands between OPT and ALT states, the simulations alternate between having a large
majority of the islands in the OPT state and having a large majority of the islands in
the ALT state.

4 Occasional Migration

In this section,we consider the behavior of the islandmodelwhenmigration occurs less
frequently. In particular, we demonstrate that with pmig = O(1/t0), the ring topology
is not able to track the optimum through n phases, while the complete migration
topology with the same migration frequency is able to do so.

The following lemma provides a useful bound on the distribution of the non-LOST
island states immediately prior to a phase transition in cases where migration does
not occur close to the phase transition. Its proof follows the approach used in [17] to
analyze the behavior of a single (1 + 1) EA island on Maze.

Lemma 8 Let 0 < pOPT < 1 be a constant, and let 0 < pmut ≤ 1/4. Assuming
no migration or phase transitions have occurred for at least t = 2k/pmut iterations,
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Fig. 3 1000 simulations of an island system with λ = 100 islands running the simplified island model,
using a unidirectional ring as the migration topology, and pmig = 1, pOPT = 1/2, pmut = 1/2000,
initialized with a single island in the ALT state at iteration 1, and all remaining islands in the LOST state.
The plot shows the average (mean) number of islands in the OPT state, standard deviation from this mean
(shaded blue region), as well as the 25th and 10th percentiles of the observed number of OPT islands at a
given iteration across the simulations (Color figure online)

ALT OPT

pAO = pOPT pmut

pOA = (1 − pOPT) pmut

1− pAO 1− pOA

Fig. 4 Island behavior in the absence of migration and phase transitions, modeled as a two-state Markov
chain in the proof of Lemma 8

where k is a large-enough constant, the probability pA that a non-LOST island is in
an ALT state can be bounded by constants a ≤ pA ≤ b such that a > 0 and b < 1.

Proof In the absence of migration, the behavior of a non-LOST island can be modeled
by a Markov chain over the two states ALT and OPT (corresponding to the current-
best individuals), illustrated in Fig. 4. The steps of the Markov chain correspond to
iterations of the simplified islandmodel, and the probabilities of transitioning between
the states are pAO = pOPT pmut and pOA = (1 − pOPT)pmut respectively.

Let π = (πALT, πOPT) be the steady-state distribution of the Markov chain, and
consider πALT, the probability of the chain being in the ALT state:
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πALT = πOPT pOA + πALT(1 − pAO)

= πOPT(1 − pOPT)pmut + πALT(1 − pOPT pmut)

= (1 − πALT)(1 − pOPT)pmut + πALT(1 − pOPT pmut)

= (1 − pOPT)pmut + πALT(1 − pmut),

as πOPT + πALT = 1, and by rearranging:

πALT − πALT(1 − pmut) = (1 − pOPT)pmut

πALT pmut = (1 − pOPT)pmut

πALT = 1 − pOPT. (2)

Over time, the distribution of the island’s state approaches the steady-state distribu-
tion of thisMarkov chain. To bound the total variation distance (i. e., 12

∑
s∈Ω |ps−πs |,

where ps is the probability that the Markov chain is in state s at a particular time), we
use a coupling time argument: the total variation distance at time t is at most the prob-
ability that two independent instances of the Markov chain, started in different states,
have not ever been in the same state by time t , as proven in e.g. [14, Theorem 5.2].
Using pOA and pAO to denote the transition probabilities, the total variation distance
at time t is thus at most

(1 − pOA(1 − pAO) − (1 − pOA)pAO)t

= (1 − pOA − pAO + 2 pOA pAO)t

=
(
1 − pmut + 2pmut

2(pOPT − pOPT
2)

)t

≤ (1 − pmut/2)
t

using that (pOPT − pOPT2) < 1, and 2pmut
2 ≤ pmut/2 for pmut ≤ 1/4.

Thus the total variation distance after t = 2k/pmut iterations is at most:

(1 − pmut/2)
2k/pmut ≤ e−k,

and therefore pA, the probability that the island ends the phase with ALT as its current-
best individual, can differ from πALT by at most e−k/2:

πALT − e−k/2 ≤ pA ≤ πALT + e−k/2,

and, by substituting (2),

(1 − pOPT) − e−k ≤ pA ≤ (1 − pOPT) + e−k,

which are constant when pOPT is a constant and k is a large-enough constant. ��
Corollary 9 When migration does not occur significantly more often than mutation,
i. e., pmig ∈ O(pmut), and 0 < pOPT < 1 is a constant, the probability pA that a

123



Algorithmica

non-LOST island is in the ALT state Ω(1/pmut) iterations after a phase transition (or
after the island becoming non-LOST), can be bounded by constants a ≤ pA ≤ b,
where a > 0, b < 1.

Proof The approach used to prove Lemma 8 can be adapted to this setting.
For the lower bound on pA, we pessimistically assume that migration, when it

occurs, always causes a transition from the ALT state to the OPT state; as pmig ∈
O(pmut), this increases pAO by at most a constant factor, and hence increases πALT
by at most a constant.

For the upper bound on pA, we similarly assume that migration always causes a
transition from the OPT state to the ALT state, increasing pOA by at most a constant
factor, and hence decreasing πALT by at most a constant.

Increasing the transition probabilities between states can only shorten the time
required to reduce the total variation distance down to the desired level, so the e−k

bound on total variation distance from the Markov chain steady-state distribution can
be applied without further modifications. ��

4.1 Ring Topology

With migration occurring an expected constant number of times in each phase, using
the unidirectional ring as the migration topology results in all islands being in the
LOST state at the end of n phases.

Theorem 10 When t0 ∈ Ω
(
n2

) ∩ O(poly(n)), 1/2 + ε ≤ pOPT ≤ 1 − ε for some
constant ε > 0, pmut = 1/(en), pmig = 1/(kt0), where k > 1 is a large-enough
constant (possibly depending on ε), λ = O(n1−ε), and G is a λ-vertex unidirectional
ring, the simplified islandmodel will with high probability have all islands in the LOST
state by the end of phase n.

Proof From all consecutive segments of LOST islands in the migration topology at
the start of phase p, let L be the one that is longest and includes the island of lowest
index. Let X p be the number of islands not in L . We would like to apply the additive
drift theorem to X p, showing that there exists a drift toward 0, and, as λ = O(n1−ε),
X p = 0 is hit before the n phases are over. This corresponds to L growing tomaximum
length.

We begin by showing a negative drift on X p when all islands are in a non-LOST
state (i.e. X p = λ). In this case, by Lemma 8, with probability greater than 1− pmig ·
2k/pmut = 1 − O(n−1), no migration occurs too close to the phase transition, and
thus all islands are within a constant variation distance of the steady-state distribution.
The drift can be bounded by considering the contribution of a single island:

E(X p − X p+1 | X p = λ) ≥ (1 − pOPT − e−k)
(
1 − O(n−1)

)

= Θ(1)

since pOPT + e−k ≤ 1 − ε/2 if k is large enough.
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While 0 < X p < λ, the LOST segment may shrink before the phase transition as
migration is able to recover LOST islands, andmay grow following the phase transition
as some islands transition to the LOST state. Let δ− be the negative contribution of
migration during the phase, δ+ be the positive contribution of the phase transition, and
R be the event that 0 < X p < λ; we would like to show that:

E(X p − X p+1 | R) ≥ E(δ+ | R) − E(δ− | R) > c,

where c > 0 is constant.
The negative contribution δ− can be upper-bounded as the number of migrations

that occur during the t0 iterations in a phase, i. e., a binomially-distributed variable:

E(δ− | R) ≤ t0 pmig = 1/k.

The positive contribution δ+ can be lower-bounded by focusing on the non-LOST
island immediately following the LOST segment L . If this island is in the ALT state at
the phase transition, the LOST segment length will increase by at least 1 following the
phase transition. We note that for as long as the LOST segment preceding it does not
disappear entirely, this island is not affected by migration, which allows the strategy
used in the proof of Lemma 8 to be applied.

When this island is not affected by migration, the true probability of having ALT
as the current-best individual approaches πALT = 1− pOPT from above, as the island
begins phase p with ALT as its current-best solution (due to the phase transition
preceding phase p). This allows us to use 1− pOPT ≥ ε as a lower bound on E(δ+ | R)

when this island is not affected by migration.
When the island is affected by migration, Corollary 9 can be applied: even in the

presence of migration to the considered island, the probability that it ends the phase
in an ALT state, and hence E(δ+ | R), can be lower-bounded by a positive constant.

Returning to the overall drift,

E(X p − X p+1 | R) = E(δ+ | R) − E(δ− | R) = Ω(1) − 1/k

i. e., for a large-enough constant k, there is a constant drift toward X p = 0.
Applying the additive drift theorem, the expected first hitting time of X p = 0 is

O(λ) = O(n1−ε) phases. We note that the probability that this does not happen in
twice the expected number of phases is, by applying Markov’s inequality, at most 0.5;
and afterΩ(nε) repetitions, at most 2−Ω(nε ). Therefore, with high probability, the ring
topology loses track of the optimum on all islands before the n phases are over. ��

This serves as an illustration that with pmig < 1/(k t0), where k > 1 is a sufficiently
large constant, migration on a ring topology is not able to recover islands lost in phase
transitions sufficiently quickly. In such circumstances, denser migration topologies
may have an advantage, as they are able to repopulate more islands per migration, and
therefore also track the optimum through a greater number of phases.
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4.2 Complete Topology

In [17], it was proven that a complete migration topology loses track of the Maze
optimum if migrations occurred less frequently than once in every O(log(λ)t0) iter-
ations. This result also points to a negative result for the complete topology with
pmig ∈ O(1/t0) in the simplified model, as the time between migrations, which is
geometrically distributed, may exceed c t0 log(n) iterations with probability n−c/k ,
where k > 0 is a constant. Partitioning the optimization process into Ω(n/log n)

stages (of Θ(log n) phase transitions each), we conclude that with migration rate
pmig = 1/(k t0), the complete topology will fail at least one such stage with high
probability, and therefore will fail to track the optimum through the n phases.

We note that Theorem 10would also apply to anymigration schedule with the same
expected number of migrations. On the other hand, there is a randomized migration
schedule, with the same expected number of migrations, for which a complete migra-
tion topology is able to track the optimum through all n phases even with λ ∈ O(log n)

islands.

Theorem 11 Let t0 ∈ Ω
(
n2

) ∩ O(poly(n)), 0 < pOPT < 1 a constant, pmut =
1/(en), λ ∈ Ω(log n), G be a complete λ-vertex graph, and let migration occur once
every kt0 iterations (where k > 1 is a constant), with the iteration being chosen
uniformly at random. The simplified island model is able to track the optimum through
n phases of t0 iterations each with high probability.

Proof We note that the maximum number of iterations between any two migrations
in this schedule is 2kt0, corresponding to migration occurring on the first and last
iterations of two adjacent kt0 iteration blocks; thus, at most 2k phases can elapse
without migration.

Consider the probability that a single island loses track of the oscillating optimum in
2k phase transitions: in the absence of migration, Lemma 8 applies, and the probability
of a non-LOST island ending a phase with an ALT current-best individual is at most a
constant smaller than 1. Thus, the probability that the island survives through 2k phase
transitions,where k is a constant, is also a constant; and therefore, the probability that at
least one of λ = Ω(log n) islands survives is at least 1−n−c, where c > 0 is a constant.

Thus, as long as at least one island survives a migration-less period, the complete
migration topology will allow all islands to recover from the LOST state. With a suf-
ficiently large λ, the probability that at least one island survives through each of the
at most O(n) migration-less periods can be made polynomially high, and hence the
complete migration topology will be able to track the oscillating optimum through all
n phases with high probability.

We note that this process relies on no migration occurring too close to a phase
transition, as, in the worst case, this could migrate the ALT individual to all islands,
resulting in all islands losing track of the oscillating optimum when the phase transi-
tion occurs. Per Lemma 8, this is not a problem as long as no migration occurs within
O(1/pmut) = O(n) iterations of each phase transition; and so we note that there are
at most O(n2) iterations during which migration should not occur, and this constraint
is respected with probability at least 1 − O(n2 pmig) = 1 − O(n−1). Thus, with high
probability, this problematic situation does not occur. ��
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5 Moderately-Frequent Migration on the Ring

If migration on the ring topology occurs sufficiently often to recover all of the lost
islands, and yet rarely enough to ensure that the distribution of the island states is
governed primarily by themixing time argument, the simplified islandmodelmay track
the optimum of the Maze through n oscillating phases while preserving diversity in
the island population, allowing the oscillating optimum to be tracked for any constant
pOPT > 0, rather than the pOPT > 1/2 required by Theorem 5.

Theorem 12 When λ ≥ c log n, where c is a sufficiently-large constant, t0 =
ω(λ/pmig), pmut = 1/(en), 0 < pOPT < 1 a constant, the migration topology is
a unidirectional ring, and pmig = n−1.5, the probability that the simplified island
model has at least one non-LOST island after n · t0 iterations is at least 1 − O(1/n).

Proof We note that as long as at least one island is in a non-LOST state following a
phase transition, in O(λ/pmig) iterations, all islands will be in a non-LOST state with
high probability. This can be shown by applying a Chernoff bound on a the number
of migrations occurring within 2λ/pmig iterations: the probability that this is less than
half of its 2λ expectation is atmost e−λ/4, which can bemade O(n−2)-small by picking
a sufficiently-large constant c in λ ≥ c log n. Thus, we focus on the distribution of
OPT/ALT islands in the final iteration of the phase, given that all islands have been
in a non-LOST state for at least 4c′n iterations, where c′ > 0 is a positive constant
chosen such that Lemma 8 can be applied after c′n iterations.

Focusing on the final iteration, let T be a random variable denoting the number
of iterations that have elapsed since the last migration which occurred. As migration
occurs independently at random in each iteration with probability pmig, T is geo-
metrically distributed, and also describes the number of iterations between any two
subsequent migrations. When T ≥ c′n, we can apply Lemma 8, and call the island
model sufficiently-mixed: because no migration has occurred for a while, all non-
LOST islands have at least a positive constant probability of being in the ALT and
OPT states, independent of each other.

From the properties of the geometric distribution, we know the phase ends on a
sufficiently-mixed iteration with probability at least ps ≥ (1−n−1.5)c

′n ≥ 1− c′/
√
n

(using Bernoulli’s inequality), and that either the phase transition or at least one of the
last threemigrations occurred on a sufficiently-mixed iterationwith probability at least
1−(1− ps)4 = 1−O(n−2). Thus, across all n phase transitions, we can conclude that
with probability (1− O(n−2))n ≥ 1− O(1/n), there is a sufficiently-mixed iteration
among the last 3c′n iterations of each phase, and either the phase transition, or one of
the preceding three migrations occurs on a sufficiently-mixed iteration.

We now distinguish between two cases, depending on whether the phase transition
occurred on a sufficiently-mixed iteration. If this is the case, as it is for the majority
of the n phases, we will argue that this directly implies that at least one island will
have OPT as its best-so-far individual and will keep tracking the oscillating optimum
through the phase transition. If the phase transition does not occur on a sufficiently-
mixed iteration, at it does for a O(n0.5)-minority of the phases, we will show that, with
high probability, at least one of the three migrations preceding the phase transition
occurred on a sufficiently-mixed iteration, and there will exist a segment of at least
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4 islands with OPT as their best-so-far solution, and that at least one of these islands
remains in the OPT state until the phase transition.

If the phase transition occurs on a sufficiently-mixed iteration, each island is in the
OPT state with at least constant probability pO > 0 per Lemma 8, and thus there exists
a sufficiently large constant c in λ ≥ c log n such that at least one island is in the OPT
state when the phase transition occurs with probability (1 − pO)λ = 1 − O(n−2).

If the phase transition does not occur on a sufficiently-mixed iteration, we look
back to the last migration occurring on a sufficiently-mixed iteration. With probability
1− O(n−2), this migration occurs at most 3c′n iterations before the phase transition,
and is followed by at most two other migrations. We divide the ring into λ/4 segments
of 4 islands each, and focus on the probability ps that, in a given segment, all four
islands are in the OPT state when the last sufficiently-mixed migration occurs, and
no migration occurs on any of the four islands between the last sufficiently-mixed
migration and the phase transition.

By Lemma 8, each island is in the OPT state independently with at least constant
probability pO > 0 during the sufficiently-mixed migration, and thus each segment
consists entirely of OPT islands immediately before this migration with probability at
least pO4 = Ω(1). Additionally, no island in the segment is affected by mutation in
the remaining 3c′n iterations with probability at least (1 − pmut)

3c′ n = Ω(1).
Thus, with constant probability ps > 0, any given segment of 4 islands consists of

only islands in theOPT state immediately prior to the last sufficiently-mixedmigration,
and is not affected by mutation until the phase transition. The fourth island in such
a segment will remain in the OPT state until the phase transition: the closest island
in the ALT state is at least four migrations away, while at most three migrations will
occur prior to the phase transition, and migration will not occur on any island in the
segment. Therefore, there exists a constant c for λ ≥ c log n which ensures that with
probability (1 − ps)λ/4 ≥ 1 − n−0.25c log ps ≥ 1 − n−2, at least one island will still
track the oscillating optimum following the phase transition.

We can then combine the failure probabilities of the considered events across n
phases: with probability O(n−2), too few migrations occur to ensure that all islands
are in a non-LOST state 4c′n iterations before the phase transition, with probability
O(n−2), there is no sufficiently-mixed iteration in the final 3c′n iterations before
the phase transition, and with probability O(n−2), none of the c log n islands are
in the OPT state during the phase transition. Using a union bound, the simplified
island model is able to track the optimum through n phases with probability at least
1 − O(n · n−2) = 1 − O(1/n). ��

We note the simplified island model is able to track the optimum even if the indi-
vidual preferred by the next phase is not favored by the random oscillation, i.e.
0 < pOPT < 1/2. This also implies that with any constant 1/2 < pOPT < 1, at
least one island will be in the ALT state during each of n phase transitions with high
probability: thus, in this setting, the simplified island is able to guarantee some level
of diversity among the island population.

It is possible to extend the proof of Theorem12 to accommodate pmig = n−(1+ε) for
any positive constant ε > 0. Such a change would increase the number of migrations
that might occur between the last sufficiently-mixedmigration and the phase transition
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to a larger constant. To accommodate this, the length of the OPT segments that need
to exist immediately prior to the sufficiently-mixed migration would also need to be
increased to a larger constant. This, in turn, may require the constant c in λ = c log n
to be increased to maintain the same overall failure probability.

6 Conclusion

We have demonstrated using rigorous analysis that there exist choices of parameters
for the simplified island model for which a complete migration topology as well
as all topologies with small logarithmic diameter with high probability result in a
failure to track the oscillating optimum through all n phases. In the same settings,
using a unidirectional ring migration topology of diameter c log n, where c > 0 is
a sufficiently large constant, allows the optimum to be tracked through all n phases
with high probability. This example illustrates that a less dense migration topology
can mitigate the effects of migration occurring during unfavorable iterations of an
oscillating fitness function, reducing the need to rely on problem-specific knowledge
as in [17]. Moreover, the analysis reveals a crucial dependency of the efficiency of the
model on the topology’s diameter, for which we have established a sharp-threshold
result. At the other extreme, we have also proven that denser migration topologies may
be advantageous if migration occurs only rarely, as in this setting the ring topology
may not allow lost islands to be recovered quickly enough to replenish those which
lose track of the oscillating optimum during phase transitions.

While this paper introduced and derived results based on the simplified island
model, we believe that the presented results could be transferred to the original setting
of (1 + 1) EA islands tracking the original Maze function.

In future work, it would be useful to provide a more precise bound on the graph
diameter threshold where the simplified island model transitions to being able to track
the optimum through alln phases.Additionally, the presented results could be extended
to less extreme settings of pmig, building on the initial result of “moderately frequent
migration” considered in Sect. 5, which states that any constant pOPT > 0 is sufficient
when pmig = n−1.5 and the number of islands is at least logarithmic.

We note that while our theoretical analysis does not prove this directly, our experi-
ments from Sect. 3.3 suggest that pmig = 1 combined with a low value of the product
λ · pmut actually leads to a reduction in population diversity, with the majority of the
islands settling onOPT as their current-best solution, rather than achieving a pOPT-like
balance between OPT and ALT islands. We conjecture that such a balance could be
achieved when using moderate migration probabilities.
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