57 research outputs found

    E-democracy: exploring the current stage of e-government

    Get PDF
    Governments around the world have been pressured to implement e-Government programs in order to improve the government-citizen dialogue. The authors of this article review prior literature on such efforts to find if they lead to increased democratic participation ("e-Democracy") for the affected citizens, with a focus on the key concepts of transparency, openness, and engagement. The authors find that such efforts are a starting point toward e-Democracy, but the journey is far from complete

    Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation

    Get PDF
    International audienceIon channels are desirable therapeutic targets, yet ion channel-directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies-small, single-domain antibody fragments-may overcome these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5′-triphosphate released by damaged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1b (IL-1b). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human blood, Dano1 was 1000 times more potent in preventing IL-1b release than small-molecule P2X7 antagonists currently in clinical development. Our results show that nanobody technology can generate potent, specific therapeu-tics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent new drug candidate that targets P2X7

    Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    Get PDF
    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis

    Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies

    Get PDF
    The clinical diagnosis of inherited renal tubulopathies can be challenging as they are rare and characterized by significant phenotypic variability. Advances in sequencing technologies facilitate the establishment of a molecular diagnosis. Therefore, we determined the diagnostic yield of a next generation sequencing panel assessing relevant disease genes in children followed through three national networks with a clinical diagnosis of a renal tubulopathy. DNA was amplified with a kit provided by the European Consortium for High-Throughput Research in Rare Kidney Diseases with nine multiplex PCR reactions. This kit produced 571 amplicons covering 37 genes associated with tubulopathies followed by massive parallel sequencing and bioinformatic interpretation. Identified mutations were confirmed by Sanger sequencing. Overall, 384 index patients and 16 siblings were assessed. Most common clinical diagnoses were 174 patients with Bartter/Gitelman syndrome and 76 with distal renal tubular acidosis. A total of 269 different variants were identified in 27 genes, of which 95 variants were considered likely, 136 definitely pathogenic and 100 had not been described at annotation. These mutations established a genetic diagnosis in 245 of the index patients. Genetic testing changed the clinical diagnosis in 16 cases and provided insights into the phenotypic spectrum of the respective disorders. Our results demonstrate a high diagnostic yield of genetic testing in children with a clinical diagnosis of a renal tubulopathy, consistent with a predominantly genetic etiology in known disease genes. Thus, genetic testing helped establish a definitive diagnosis in almost two-thirds of patients thereby informing prognosis, management and genetic counseling

    A Spaetzle-like role for nerve growth factor beta in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity
    corecore