441 research outputs found

    PG 1002+506: A Be Star Apparently at z \u3e +10 Kiloparsecs

    Get PDF
    PG 1002+506 is found to be a Be star, one of three found so far by the Palomar-Green survey. Its spectrum is classified as a B5 ± 1 Ve, with Teff = 14,900 ± 1200, log g = 4.2 ± 0.2, and v sin i = 340 ± 50 km s-1. At b = +51°, its height above the Galactic plane would therefore be z = +10.8 kpc, putting this apparently young, rapidly rotating star well into the Galactic halo. Its heliocentric radial velocity is found to be -2 ± 15 km s-1, consistent with either having been formed in the Galactic disk and subsequently ejected or having been formed in the halo

    Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo

    Full text link
    We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a heliocentric radial velocity of +853+-12 km/s, the largest velocity ever observed in the Milky Way halo. The star is either a hot blue horizontal branch star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected for the solar reflex motion and to the local standard of rest, the Galactic rest-frame velocity is +709 km/s. Because its radial velocity vector points 173.8 deg from the Galactic center, we suggest that this star is the first example of a hyper-velocity star ejected from the Galactic center as predicted by Hills and later discussed by Yu & Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and a travel time of <80 Myr from the Galactic center, consistent with its stellar lifetime. If the star is indeed traveling from the Galactic center, it should have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional hyper-velocity stars throughout the halo will constrain the production rate history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter

    The spatial distribution of O-B5 stars in the solar neighborhood as measured by Hipparcos

    Full text link
    We have developed a method to calculate the fundamental parameters of the vertical structure of the Galaxy in the solar neighborhood from trigonometric parallaxes alone. The method takes into account Lutz-Kelker-type biases in a self-consistent way and has been applied to a sample of O-B5 stars obtained from the Hipparcos catalog. We find that the Sun is located 24.2 +/- 1.7 (random) +/- 0.4 (systematic) pc above the galactic plane and that the disk O-B5 stellar population is distributed with a scale height of 34.2 +/- 0.8 (random) +/- 2.5 (systematic) pc and an integrated surface density of (1.62 +/- 0.04 (random) +/- 0.14 (systematic)) 10^{-3} stars pc^{-2}. A halo component is also detected in the distribution and constitutes at least ~5% of the total O-B5 population. The O-B5 stellar population within ~100 pc of the Sun has an anomalous spatial distribution, with a less-than-average number density. This local disturbance is probably associated with the expansion of Gould's belt.Comment: 14 pages, 3 figures, to appear in the May 2001 issue of the Astronomical Journa

    Metallicity in the Galactic Center: The Arches cluster

    Full text link
    We present a quantitative spectral analysis of five very massive stars in the Arches cluster, located near the Galactic center, to determine stellar parameters, stellar wind properties and, most importantly, metallicity content. The analysis uses a new technique, presented here for the first time, and uses line-blanketed NLTE wind/atmosphere models fit to high-resolution near-infrared spectra of late-type nitrogen-rich Wolf-Rayet stars and OfI+ stars in the cluster. It relies on the fact that massive stars reach a maximum nitrogen abundance that is related to initial metallicity when they are in the WNL phase. We determine the present-day nitrogen abundance of the WNL stars in the Arches cluster to be 1.6% (mass fraction) and constrain the stellar metallicity in the cluster to be solar. This result is invariant to assumptions about the mass-luminosity relationship, the mass-loss rates, and rotation speeds. In addition, from this analysis, we find the age of the Arches cluster to be 2-2.5Myr, assuming coeval formation

    Star Formation in the Most Distant Molecular Cloud in the Extreme Outer Galaxy: A Laboratory of Star Formation in an Early Epoch of the Galaxy's Formation

    Full text link
    We report the discovery of active star formation in Digel's Cloud 2, which is one of the most distant giant molecular clouds known in the extreme outer Galaxy (EOG). At the probable Galactic radius of ~20 kpc, Cloud 2 has a quite different environment from that in the solar neighborhood, including lower metallicity, much lower gas density, and small or no perturbation from spiral arms. With new wide-field near-infrared (NIR) imaging that covers the entire Cloud 2, we discovered two young embedded star clusters located in the two dense cores of the cloud. Using our NIR and 12CO data as well as HI, radio continuum, and IRAS data in the archives, we discuss the detailed star formation processes in this unique environment. We show clear evidences of a sequential star formation triggered by the nearby huge supernova remnant, GSH 138-01-94. The two embedded clusters show a distinct morphology difference: the one in the northern molecular cloud core is a loose association with isolated-mode star formation, while the other in the southern molecular cloud core is a dense cluster with cluster-mode star formation. We propose that high compression by the combination of the SNR shell and an adjacent shell caused the dense cluster formation in the southern core. Along with the low metallicity range of the EOG, we suggest that EOG could be an excellent laboratory for the study of star formation processes, such as those triggered by supernovae, that occured during an early epoch of the Galaxy's formation. In particular, the study of the EOG may shed light on the origin and role of the thick disk, whose metallicity range matches with that of the EOG well.Comment: Accepted by The Astrophysical Journal (18 pages, 9 figures; a version w/full-resolution color figures is available at http://www.ioa.s.u-tokyo.ac.jp/~naoto/papers/apj.cl2_quirc/ms2p_final.pdf

    First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A

    Full text link
    We present the abundance analyses of three isolated A-type supergiant stars in the dwarf irregular galaxy Sextans A from high-resolution spectra the UVES spectrograph at the VLT. Detailed model atmosphere analyses have been used to determine the stellar atmospheric parameters and the elemental abundances of the stars. The mean iron group abundance was determined from these three stars to be [(FeII,CrII)/H]=-0.99+/-0.04+/-0.06. This is the first determination of the present-day iron group abundances in Sextans A. These three stars now represent the most metal-poor massive stars for which detailed abundance analyses have been carried out. The mean stellar alpha element abundance was determined from the alpha element magnesium as [alpha(MgI)/H]=-1.09+/-0.02+/-0.19. This is in excellent agreement with the nebular alpha element abundances as determined from oxygen in the H II regions. These results are consistent from star-to-star with no significant spatial variations over a length of 0.8 kpc in Sextans A. This supports the nebular abundance studies of dwarf irregular galaxies, where homogeneous oxygen abundances are found throughout, and argues against in situ enrichment. The alpha/Fe abundance ratio is [alpha(MgI)/FeII,CrII]=-0.11+/-0.02+/-0.10, which is consistent with the solar ratio. This is consistent with the results from A-supergiant analyses in other Local Group dwarf irregular galaxies but in stark contrast with the high [alpha/Fe] results from metal-poor stars in the Galaxy, and is most clearly seen from these three stars in Sextans A because of their lower metallicities. The low [alpha/Fe] ratios are consistent with the slow chemical evolution expected for dwarf galaxies from analyses of their stellar populations.Comment: 40 pages, 8 figures, accepted for publication in A

    Stellar populations in the surrounding field of the LMC clusters NGC 2154 and NGC 1898

    Get PDF
    In this paper we present a study and comparison of the star formation rates (SFR) in the fields around NGC 1898 and NGC 2154, two intermediate-age star clusters located in very different regions of the Large Magellanic Cloud. We also present a photometric study of NGC 1898, and of seven minor clusters which happen to fall in the field of NGC 1898, for which basic parameters were so far unknown. We do not focus on NGC 2154, because this cluster was already investigated in Baume et al. 2007, using the same theoretical tools. The ages of the clusters were derived by means of the isochrone fitting method on their cleanclean color-magnitude diagrams. Two distinct populations of clusters were found: one cluster (NGC 2154) has a mean age of 1.7 Gyr, with indication of extended star formation over roughly a 1 Gyr period, while all the others have ages between 100 and 200 Myr. The SFRs of the adjacent fields were inferred using the downhill-simplex algorithm. Both SFRs show enhancements at 200, 400, 800 Myr, and at 1, 6, and 8 Gyr. These bursts in the SFR are probably the result of dynamical interactions between the Magellanic Clouds (MCs), and of the MCs with the Milky Way.Comment: 10 pages, 11 eps figures, in press in MNRAS. For a version including references contact the author

    Iron abundances from optical Fe III absorption lines in B-type stellar spectra

    Get PDF
    The role of optical Fe III absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~ 3560 - 9200 A, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY (plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with FEROS, reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of Fe III transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.Comment: 3 figures and 8 tables. Table 3 is to be published online only (included here on last page). Accepted for publication in MNRA

    Metal Abundances in the Magellanic Stream

    Full text link
    We report on the first metallicity determination for gas in the Magellanic Stream, using archival HST GHRS data for the background targets Fairall 9, III Zw 2, and NGC 7469. For Fairall 9, using two subsequent HST revisits and new Parkes Multibeam Narrowband observations, we have unequivocally detected the MSI HI component of the Stream (near its head) in SII1250,1253 yielding a metallicity of [SII/H]=-0.55+/-0.06(r)+/-0.2(s), consistent with either an SMC or LMC origin and with the earlier upper limit set by Lu et al. (1994). We also detect the saturated SiII1260 line, but set only a lower limit of [SiII/H]>-1.5. We present serendipitous detections of the Stream, seen in MgII2796,2803 absorption with column densities of (0.5-1)x10^13 cm^-2 toward the Seyfert galaxies III Zw 2 and NGC 7469. These latter sightlines probe gas near the tip of the Stream (80 deg down-Stream of Fairall 9). For III Zw 2, the lack of an accurate HI column density and the uncertain MgIII ionization correction limits the degree to which we can constrain [Mg/H]; a lower limit of [MgII/HI]>-1.3 was found. For NGC 7469, an accurate HI column density determination exists, but the extant FOS spectrum limits the quality of the MgII column density determination, and we conclude that [MgII/HI]>-1.5. Ionization corrections associated with MgIII and HII suggest that the corresponding [Mg/H] may range lower by 0.3-1.0 dex. However, an upward revision of 0.5-1.0 dex would be expected under the assumption that the Stream exhibits a dust depletion pattern similar to that seen in the Magellanic Clouds. Remaining uncertainties do not allow us to differentiate between an LMC versus SMC origin to the Stream gas.Comment: 30 pages, 8 figures, LaTeX (aaspp4), also available at http://casa.colorado.edu/~bgibson/publications.html, accepted for publication in The Astronomical Journa
    • …
    corecore