PG 1002+506: A Be Star Apparently at z > +10 Kiloparsecs

F. A. Ringwald
Pennsylvania State University
W. R. J. Rolleston
Queen's University Belfast
R. A. Saffer
Villanova University
John R. Thorstensen
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa
Part of the Stars, Interstellar Medium and the Galaxy Commons

Dartmouth Digital Commons Citation

Ringwald, F. A.; Rolleston, W. R. J.; Saffer, R. A.; and Thorstensen, John R., "PG 1002+506: A Be Star Apparently at z > +10 Kiloparsecs" (1998). Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 2278.
https://digitalcommons.dartmouth.edu/facoa/2278

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.

PG $1002+506$: A Be STAR APPARENTLY AT $z>+10$ KILOPARSECS

F. A. Ringwald
Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802-6305; ringwald@astro.psu.edu
W. R. J. Rolleston
Department of Pure and Applied Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland; R.Rolleston@queens-belfast.ac.uk
R. A. SAFFER
Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085; rsaffer@ucis.vill.edu

AND
John R. Thorstensen
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755-3528; thorstensen@dartmouth.edu
Received 1997 April 18; accepted 1997 December 1

Abstract

PG $1002+506$ is found to be a Be star, one of three found so far by the Palomar-Green survey. Its spectrum is classified as a B5 $\pm 1 \mathrm{Ve}$, with $T_{\text {eff }}=14,900 \pm 1200, \log g=4.2 \pm 0.2$, and $v \sin i=340 \pm 50$ $\mathrm{km} \mathrm{s}^{-1}$. At $b=+51^{\circ}$, its height above the Galactic plane would therefore be $z=+10.8 \mathrm{kpc}$, putting this apparently young, rapidly rotating star well into the Galactic halo. Its heliocentric radial velocity is found to be $-2 \pm 15 \mathrm{~km} \mathrm{~s}^{-1}$, consistent with either having been formed in the Galactic disk and subsequently ejected or having been formed in the halo.

Subject headings: Galaxy: halo - stars: emission-line, Be - stars: fundamental parameters -
stars: individual (PG 1002+506)

1. INTRODUCTION

PG $1002+506$ was discovered by the Palomar-Green UV-excess survey (Green, Schmidt, \& Liebert 1986) and listed as a cataclysmic variable (CV). During a study of the CVs from this survey, Ringwald (1993) obtained ultraviolet and red spectra and tentatively reclassified it as a detached subdwarf binary, noting $\mathrm{H} \alpha$ in strong emission, unresolved at $10 \AA$ resolution. Several puzzling aspects were noted, however, including the near-constancy of the radial velocities throughout two nights, consistent with no change other than that attributable to atmospheric dispersion in an unrotated slit. There was also no significant variation in the equivalent width of $\mathrm{H} \alpha$, which one might expect if this were a detached CV progenitor with the hot component irradiating the facing hemisphere of its companion.

That PG $1002+506$ is not a CV was shown definitively by E. L. Robinson (1995, private communication): it does not flicker or have the erratic variability ubiquitous in CVs. This was found with high-speed simultaneous $U B V R$ photometry taken in 1995 June with the Stiening photometer on the McDonald Observatory 2.1 m telescope. In 25 minutes of photometry with 1 s time resolution, all bands showed peak-to-peak amplitudes of less than 2%.

This and further spectra have forced another reclassification of this star as a high-latitude Be star. This is one of three known in the Palomar-Green catalog, the others being PG $1444+236$ (Herbig 1992) and PG $0914+001$ (Saffer et al. 1997). An Oe star from this survey is also known, PG 2120+062 (Moehler, Heber, \& Dreizler 1994).

For reviews on Be stars, see Jaschek \& Jaschek (1987) and Slettebak (1988). About one in five nonsupergiant B stars shows emission, mainly in $\mathrm{H} \alpha$ but sometimes also in $\mathrm{H} \beta$ and higher Balmer lines. Struve (1931) attributed this to a disk extruded by the star's rotation near the breakup velocity, $(G M / R)^{1 / 2}$. What excites the emission in Be stars is a long-standing mystery, however, as is their evolutionary
status. Although Be stars often have an IR excess, PG $1002+506$ is not an IRAS source (IRAS Catalogs and Atlases: Explanatory Supplement 1988).

2. BLUE SPECTRUM

A blue spectrum (Fig. 1) was taken in service time with the Intermediate Dispersion Spectrograph on the Isaac Newton Telescope on La Palma. This 1800 s spectrum was taken in photometric conditions in $2^{\prime \prime}$ seeing, through a 1 ".73 slit, and has $1.5 \AA$ (FWHM) resolution. The slit was aligned to the parallactic angle to avoid atmospheric dispersion effects; the spectrum was taken when PG $1002+506$ was nearly overhead, at an airmass of 1.08 .

A spectral classification of $\mathrm{B} 5 \pm 1 \mathrm{~V}$ was arrived at by comparing this spectrum to model atmospheres (Kurucz 1979) and published spectra (Jacoby, Hunter, \& Christian 1984; Jaschek \& Jaschek 1987). That this is a mainsequence star and not a subdwarf is shown by the presence of the H13 and H14 lines. That it is not a giant or supergiant is shown by the widths of its Balmer lines, with FWZI of $\mathrm{H} \gamma$ of $31 \pm 3 \AA$. There is no spectroscopic evidence that this star is a binary.

3. RADIAL VELOCITY

On 1997 January 3 UT, two 10 minute exposures were obtained with the Modular Spectrograph on the 2.4 m Hiltner Telescope at Michigan-Dartmouth-MIT Observatory, Kitt Peak, Arizona. The spectra covered from 4650 to $6727 \AA$, and had $4 \AA$ (FWHM) resolution. The weather was poor, with greater than $1^{\prime \prime}$ seeing and rising humidity that forced a shutdown just after these spectra were taken. The spectrograph slit was set at the parallactic angle, even though PG $1002+506$ was only 1 hour east of the meridian. The $1^{\prime \prime}$ slit projected to $3 \AA$ on the detector. With the mediocre seeing, we expect "slit-painting" velocity errors to be small, probably less than $5 \mathrm{~km} \mathrm{~s}^{-1}$, based on experience

Fig. 1.-Spectrum of PG $1002+506$, taken 1994 February 26 UT. The best-fit synthetic spectrum (heavy curve), simultaneously determining $T_{\text {eff }}$, $\log g$, and $v \sin i$, is superimposed on the observed spectrum (thin histogram). The core of $\mathrm{H} \beta$ showed emission, but was excluded to avoid spoiling the fit.
with similar sharp lines in white dwarf/red dwarf binaries (Thorstensen, Vennes, \& Shambrook 1994). The exposures were bracketed by $\mathrm{Hg}-\mathrm{Ne}-\mathrm{Xe}$ exposures, for which the rms residual was less than $0.05 \AA$, and the maximum residuals for the weakest lines were less than $10 \mathrm{~km} \mathrm{~s}^{-1}$. Most lines had residuals around $2 \mathrm{~km} \mathrm{~s}^{-1}$.
$\mathrm{H} \alpha$ appears to be slightly resolved and is in strong emission (see Fig. 2), with an equivalent width of $17.8 \pm 0.3 \AA$ and FWHM of $580 \pm 30 \mathrm{~km} \mathrm{~s}^{-1}$. There is also emission in the core of $\mathrm{H} \beta$. By convolving $\mathrm{H} \alpha$ with the derivative of a Gaussian with FWHM $=8 \AA$ and taking the zero of the convolution as the velocity (Schneider \& Young 1980), we find heliocentric radial velocities of the spectra taken at HJD 2,450,451.90425 and 2,450,451.91140 of +29.3 and $+28.9 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. The velocities of the O I $\lambda 6300$ night-sky line were 1.6 and $0.7 \mathrm{~km} \mathrm{~s}^{-1}$, showing the accuracy of the wavelength scale.

However, the emission lines in Be stars are well known to be variable in profile over timescales of days or longer and are therefore not reliable indicators of the systemic velocity. The spectra were therefore summed together and rectified to remove continuum slope effects. The radial velocity was then measured from the absorption wings of $\mathrm{H} \alpha$ by convolving a positive and a negative Gaussian with the line profile and taking the zero of this convolution as the velocity (Schneider \& Young 1980). In all cases the Gaussians had 4 channels FWHM. The separation between the Gaussians was varied, from 24 to 20 to $16 \AA$; the corresponding heliocentric radial velocities are $-2.0,-0.5$, and -4.1 km s^{-1}. Finding the line's centroid by fitting and subtracting a linear approximation of the continuum, numerically integrating the intensity, and taking the centroid (crudely, with the IRAF SPLOT "e" command) gave $+0.4 \mathrm{~km} \mathrm{~s}^{-1}$. We conclude that PG $1002+506$ has a heliocentric radial velocity of $-2 \pm 15 \mathrm{~km} \mathrm{~s}^{-1}$.

4. MODEL ATMOSPHERE ANALYSIS

We have performed a model atmosphere analysis of the blue optical spectrum to estimate the atmospheric parameters $T_{\text {eff }}$ and $\log g$ as well as the projected stellar rotation velocity $v \sin i$. Our grid of synthetic spectra was calculated with the radiative transfer code SYNSPEC (Hubeny, Lanz, \& Jeffrey 1995), assuming the temperature and pressure stratifications of Kurucz (1991). The metal and helium abundances were held fixed at the solar value. At the temperature and surface gravity of spectral type B5 V, the assumption of LTE is well justified. The temperature and gravity grid points were $T_{\text {eff }}=13,000-17,000 \mathrm{~K}$ in steps of 1000 K , and $\log g=3.5-5.0$ in steps of 0.5 dex. In addition, each model was convolved with a rotational broadening function at projected rotation velocities $v \sin i=50-350$ $\mathrm{km} \mathrm{s}^{-1}$ in steps of $50 \mathrm{~km} \mathrm{~s}^{-1}$ to produce a threedimensional fitting grid. The stellar parameters were estimated by simultaneous variation using a nonlinear χ^{2} minimization algorithm. Details of the synthetic spectrum

FIG. 2.-Modular Spectrograph profiles of $\mathrm{H} \beta$ (left) and $\mathrm{H} \alpha$ (right), at $4 \AA$ resolution, taken 1997 January 3 UT
calculations and the fitting algorithm are given by Saffer et al. $(1994,1997)$. Because of the partial filling in of the lower Balmer lines by emission from the circumstellar material, we have restricted the analysis to the portion of the spectrum blueward of $\mathrm{H} \beta$.
The best-fit stellar parameters are $T_{\text {eff }}=14,900 \pm 1200$ $\mathrm{K}, \log g=4.20 \pm 0.2$, and $v \sin i=340 \pm 50 \mathrm{~km} \mathrm{~s}^{-1}$ (see Fig. 1). The quoted 1σ errors are based on counting statistics and account for covariance for the fitting parameters; they also estimate systematic errors.

5. EVOLUTIONARY STATUS

The effective temperature, surface gravity, and very high rotational velocity are fully consistent with a spectral classification of B5 Ve. The breakup velocity expected for this star is $540 \mathrm{~km} \mathrm{~s}^{-1}$. The fit places this star in the area of confusion in the $T_{\text {eff }} / \log g$ diagram where the Population I main sequence intersects the Population II blue horizontal branch (BHB) (Schönberner 1993; Bertelli et al. 1994). For example, PG $0832+676$ at first appeared to be a young star far from the Galactic plane but turned out to be a nearby blue evolved star, upon analysis of high-resolution spectra (Hambly et al. 1996). However, identification of PG $1002+506$ as a BHB star is contradicted by both the emission reversals in the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ absorption lines and by its high rotation velocity, since BHB stars are slow rotators (Peterson, Rood, \& Crocker 1995).

Assuming PG $1002+506$ to be of Population I origin, we used the derived atmospheric parameters and the evolutionary tracks of Claret \& Gimenez (1992) to estimate the stellar mass and evolutionary age (see Table 1). A distance estimate was obtained from the absolute visual magnitude deduced from the stellar mass, atmospheric parameters, and bolometric corrections of Kurucz (1979). PG $1002+506$ has $B=15.36$ (Green et al. 1986). Assuming $B-V=-0.16$ for B5 V stars (Allen 1973) and a reddening $E(B-V)<0.01$ (inferred from the map of Burstein \& Heiles 1982), this would imply a distance of 13.9 kpc , which for a Galactic latitude $b=51^{\circ}$ corresponds to a z-distance of 10.8 kpc above the Galactic plane. Although large, this is not unheard of (Kilkenny 1992). For a Galactic longitude

TABLE 1
Stellar Parameters

Parameter	Value
$T_{\text {eff }}(\mathrm{K})$	14,900 ± 1200
$\log g \ldots$	4.2 ± 0.2
$v \sin i\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$.	340 ± 50
$v_{\text {breakup }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$.	540
Mass (M_{\odot}) \ldots	4.2
Age (Myr)........	50
l (deg)	165.072
b (deg)	50.943
B (mag)	15.36
Distance (kpc)	13.9
$R_{\text {Galactocentric }}(\mathrm{kpc})$	17.1
z distance (kpc).	10.8
$v_{\text {heliocentric }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$.	-2 ± 15
$v_{z}\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \ldots \ldots \ldots$	18.0
$T_{\text {flight }}(\mathrm{Myr})$	85
$v_{\text {ej }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	229
Age (OPT) (Myr)	115
$v_{z}(\mathrm{OPT})\left(\mathrm{km} \mathrm{s}^{-1}\right)$.	39.0
$T_{\text {flight }}(\mathrm{OPT})(\mathrm{Myr})$.	84
$v_{\mathrm{ej}}(\mathrm{OPT})\left(\mathrm{km} \mathrm{s}^{-1}\right)$.	249

$l=165^{\circ}$, this would imply a Galactocentric radius of 17.1 kpc , putting PG $1002+506$ at the outskirts of the Galaxy.

6. KINEMATICAL ANALYSIS

As the existence of young objects at large distances from the star-forming regions of the Galactic disk is potentially interesting, we have performed a kinematical analysis for PG $1002+506$. Although no proper-motion information is available, it is possible to use the observed radial velocity of a star to constrain its evolutionary history. A detailed description of the method of analysis is given by Rolleston et al. (1997).

We first consider a scenario whereby PG $1002+506$ has a zero velocity component parallel to the Galactic disk, and ejection has occurred perpendicular to the plane of the Galaxy. We have corrected the observed heliocentric velocity for the effects of differential rotation(Fich, Blitz, \& Stark 1989)-assuming that the halo corotates with the disk-to determine the stellar radial motion $\left(v_{r}\right)$ with respect to a standard of rest defined by its local environment. Our initial assumption implies that the observed radial velocity is a component of the stellar space motion $\left(v_{z}\right)$ perpendicular to the disk. We then attempt to show that PG $1002+506$ could have reached its present position in the Galactic halo within its evolutionary lifetime, while reproducing the observed radial velocity and calculating the required ejection velocity. These calculations have adopted the gravitational potential function of House \& Kilkenny (1980). This analysis implicitly assumes that the star is ejected from the disk shortly after birth, consistent with cluster ejection simulations.

The results of the kinematical analysis are given in Table 1. Given the large z distance, it is not surprising to find the "time of flight" to be larger than the evolutionary age. We have therefore considered the effects of errors in the derived atmospheric parameters and the radial velocity measurement. By optimizing the values of $T_{\text {eff }}$ and $\log g$ such that they are self-consistent within the errors, it is possible to increase the evolutionary age so that it is greater than the predicted flight time. For example, adopting values of $T_{\text {eff }}=13,750 \mathrm{~K}$ and $\log g=4.0$ would imply an age of 115 Myr for a mass of $4.0 M_{\odot}$. Allowing an error of $15 \mathrm{~km} \mathrm{~s}^{-1}$ in the observed heliocentric velocity also decreases the estimated flight time-though not significantly-to 84 Myr .

7. CONCLUSIONS

PG $1002+506$ appears to be a young, rapidly rotating B5 Ve star at a distance of 10.8 kpc from the Galactic plane and at a Galactocentric radius of 17.1 kpc . The kinematical analysis suggests that it could have attained its present Galactic position if it had been ejected from the disk shortly after its formation. Furthermore, the required ejection velocity of $\approx 230 \mathrm{~km} \mathrm{~s}^{-1}$ can also be produced by the known mechanisms predicted by Leonard (1993). A detailed atmospheric analysis with higher quality spectra should still be done to determine abundances and confirm that PG $1002+506$ really is a distant main-sequence star and not a nearby blue evolved star. If PG $1002+506$ really is 10.8 kpc from the Galactic plane, interstellar absorption in this same spectrum would probe a line through the Galactic halo otherwise difficult to acquire.
E. Harlaftis took the blue spectrum with the Isaac Newton Telescope, which is operated on La Palma by the

Royal Greenwich Observatory at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Michigan-Dartmouth-MIT Observatory is operated by a consortium of the University of Michigan,

Dartmouth College, and the Massachusetts Institute of Technology. Thanks also to Rob Robinson, Malcolm Coe, Richard Green, Uli Heber, Gerrie Peters, and Richard Wade for helpful discussions.

REFERENCES

Allen, C. W. 1973, Astrophysical Quantities (Athlone: London)
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., \& Nasi, E. 1994, A\&AS, 106, 275
Burstein, D., \& Heiles, C. 1982, AJ, 87, 1165
Claret, A., \& Gimenez, A. 1992, A\&AS, 96, 255
Fich, M., Blitz, L., \& Stark, A. A. 1989, ApJ, 342, 272
Green, R. F., Schmidt, M., \& Liebert, J. 1986, ApJS, 61, 305
Hambly, N. C., Keenan, F. P., Dufton, P. L., Brown, P. J. F., Saffer, R. A., \& Peterson, R. C. 1996, ApJ, 466, 1018
Herbig, G. H. 1992, Rev. Mex. Astron. Astrofis., 24, 187
House, F., \& Kilkenny, D. 1980, A\&A, 81, 251
Hubeny, İ., Lanz, T., \& Jeffrey, C. S. 1995, SYNSPEC: A User's Guide
IRAS Point Source Catalog, Version 2. 1988, Joint IRAS Science Working Group (Washington, DC: GPO), 201
Jacoby, G. H., Hunter, D. A., \& Christian, C. A. 1984, ApJS, 56, 257
Jaschek, C., \& Jaschek, M. 1987, The Classification of Stars (Cambridge: Cambridge Univ. Press)
Kilkenny, D. 1992, in ASP. Conf. Ser. 30, Variable Stars and Galaxies, ed. B. Warner (San Francisco: ASP), 97

Kurucz, R. L. 1979, ApJS, 40, 1
Kurucz, R. L. 1991, in Stellar Populations in Galaxies, ed. A. Renzini \& B. Barbuy (Dordrecht: Kluwer), 225

Leonard, P. J. T. 1993, in ASP. Conf. Ser. 45, Luminous High-Latitude Stars, ed. D. D. Sasselov (San Francisco: ASP), 360
Moehler, S., Heber, U., \& Dreizler, S. 1994, A\&A, 282, L29
Peterson, R. C., Rood, R. T., \& Crocker, D. A. 1995, ApJ, 453, 214
Ringwald, F. A. 1993, Ph.D. thesis, Dartmouth College
Rolleston, W. R. J., et al. 1997, MNRAS, 290, 422
Saffer, R. A., Bergeron, P., Koester, D., \& Liebert, J. 1994, ApJ, 432, 351
Saffer, R. A., Keenan, F. P., Hambly, N. C., Dufton, P. L., \& Liebert, J. 1997, ApJ, 491, 172
Schönberner, D. 1993, in IAU Symp. 155, Planetary Nebulae, ed. R. Wein-
berger \& A. Acker (Dordrecht: Kluwer), 415
Schneider, D., \& Young, P. 1980, ApJ, 238, 946
Slettebak, A. 1988, PASP, 100, 770
Struve, O. 1931, ApJ, 73, 94
Thorstensen, J. R., Vennes, S., \& Shambrook, A. 1994, AJ, 108, 1924

