671 research outputs found

    Optical SETI: A Spectroscopic Search for Laser Emission from Nearby Stars

    Get PDF
    We have searched for nonastrophysical emission lines in the optical spectra of 577 nearby F, G, K, and M main-sequence stars. Emission lines of astrophysical origin would also have been detected, such as from a time--variable chromosphere or infalling comets. We examined ~20 spectra per star obtained during four years with the Keck/HIRES spectrometer at a resolution of 5 km/s, with a detection threshold 3% of the continuum flux level. We searched each spectrum from 4000-5000 angstroms for emission lines having widths too narrow to be natural from the host star, as well as for lines broadened by astrophysical mechanisms. We would have detected lasers that emit a power, P>60 kW, for a typical beam width of ~0.01 arcsec (diffraction-limit from a 10-m aperture) if directed toward Earth from the star. No lines consisstent with laser emission were found.Comment: 27 pages, 11 figures, uses aastex.st

    Neutrino-induced deuteron disintegration experiment

    Get PDF
    Cross sections for the disintegration of the deuteron via neutral-current (NCD) and charged-current (CCD) interactions with reactor antineutrinos are measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45) cm-sq per neutrino, respectively, in excellent agreement with current calculations. Since the experimental NCD value depends upon the CCD value, if we use the theoretical value for the CCD reaction, we obtain the improved value of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current reaction allows a unique measurement of the isovector-axial vector coupling constant in the hadronic weak interaction (beta). In the standard model, this constant is predicted to be exactly 1, independent of the Weinberg angle. We measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure

    The Massive Star Clusters in the Dwarf Merger ESO 185-IG13: is the Red Excess Ubiquitous in Starbursts?

    Full text link
    We have investigated the starburst properties of the luminous blue compact galaxy ESO 185-IG13. The galaxy has been imaged with the high resolution cameras onboard to the Hubble Space Telescope. From the UV to the IR, the data reveal a system shaped by hundreds of young star clusters, and fine structures, like a tidal stream and a shell. The presence of numerous clusters and the perturbed morphology indicate that the galaxy has been involved in a recent merger event. Using previous simulations of shell formation in galaxy mergers we constrain potential progenitors of ESO 185-IG13. The analysis of the star cluster population is used to investigate the properties of the present starburst and to date the final merger event, which has produced hundreds of clusters younger than 100 Myr. We have found a peak of cluster formation only 3.5 Myr old. A large fraction of these clusters will not survive after 10-20 Myr, due to the "infant mortality" caused by gas expulsion. However, this sample of clusters represents an unique chance to investigate the youngest phases of cluster evolution. As already observed in the analog blue compact galaxy Haro 11, a fraction of young clusters are affected by a flux excess at wavelengths longer than 8000 \AA. Ages, masses, and extinctions of clusters with this NIR excess are estimated from UV and optical data. We discuss similarities and differences of the observed NIR excess in ESO 185-IG13 clusters with other cases in the literature. The cluster ages and masses are used to distinguish among the potential causes of the excess. We observe, as in Haro 11, that the use of the IR and the (commonly used) I band data results in overestimates of age and mass in clusters affected by the NIR excess. This has important implications for a number of related studies of star clusters.Comment: 23 pages, 16 figures, accepted for publication in MNRA

    Reactor-based Neutrino Oscillation Experiments

    Get PDF
    The status of neutrino oscillation searches employing nuclear reactors as sources is reviewed. This technique, a direct continuation of the experiments that proved the existence of neutrinos, is today an essential tool in investigating the indications of oscillations found in studying neutrinos produced in the sun and in the earth's atmosphere. The low-energy of the reactor \nuebar makes them an ideal tool to explore oscillations with small mass differences and relatively large mixing angles. In the last several years the determination of the reactor anti-neutrino flux and spectrum has reached a high degree of accuracy. Hence measurements of these quantities at a given distance L can be readily compared with the expectation at L = 0, thus testing \nuebar disappearance. While two experiments, Chooz and Palo Verde, with baselines of about 1 km and thus sensitive to the neutrino mass differences associated with the atmospheric neutrino anomaly, have collected data and published results recently, an ambitious project with a baseline of more than 100 km, Kamland, is preparing to take data. This ultimate reactor experiment will have a sensitivity sufficient to explore part of the oscillation phase space relevant to solar neutrino scenarios. It is the only envisioned experiment with a terrestrial source of neutrinos capable of addressing the solar neutrino puzzle.Comment: Submitted to Reviews of Modern Physics 34 pages, 39 figure

    Inelastic Scattering of Tritium-Source Antineutrinos on Electrons of Germanium Atoms

    Full text link
    Processes of the inelastic magnetic and weak scattering of tritium-beta-source antineutrinos on the bound electrons of a germanium atom are considered. The results obtained by calculating the spectra and cross sections are presented for the energy-transfer range between 1 eV and 18 keV.Comment: Latex, 7 pages, 8 ps figure

    UV+IR Star Formation Rates: Hickson Compact Groups with Swift and Spitzer

    Full text link
    We present Swift UVOT (1600-3000A) 3-band photometry for 41 galaxies in 11 nearby (<4500km/s) Hickson Compact Groups (HCGs) of galaxies. We use the uvw2-band (2000A) to estimate the dust-unobscured component, SFR_UV, of the total star-formation rate, SFR_T. We use Spitzer MIPS 24-micron photometry to estimate SFR_IR, the dust-obscured component of SFR_T. We obtain SFR_T=SFR_UV+SFR_IR. Using 2MASS K_s band based stellar mass, M*, estimates, we calculate specific SFRs, SSFR=SFR_T/M*. SSFR values show a clear and significant bimodality, with a gap between low (<~3.2x10^-11 / yr) and high SSFR (>~1.2x10^-10 / yr) systems. All galaxies with MIR activity index a_IRAC 0) are in the high- (low-) SSFR locus, as expected if high levels of star-formation power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. All elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We divide our sample into three subsamples (I, II and III) according to decreasing HI-richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and a_IRAC bimodality, 12 out of 15 type-I (11 out of 12 type-III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. Unlike HCG galaxies, galaxies in a comparison quiescent SINGS sub-sample are continuously distributed both in SSFR and a_IRAC. Any uncertainties can only further enhance the SSFR bimodality. These results suggest that an environment characterized by high galaxy number-densities and low galaxy velocity-dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star-formation processes in galaxies and favoring a fast transition to quiescence.(abridged)Comment: Accepted by ApJ. [8 Tables, 16 Figures. Color figures have reduced size for ArXiv - emulateapj v. 2/16/10

    Neutrinos in a spherical box

    Full text link
    In the present paper we study some neutrino properties as they may appear in the low energy neutrinos emitted in triton decay with maximum neutrino energy of 18.6 keV. The technical challenges to this end can be achieved by building a very large TPC capable of detecting low energy recoils, down to a a few tenths of a keV, within the required low background constraints. More specifically We propose the development of a spherical gaseous TPC of about 10-m in radius and a 200 Mcurie triton source in the center of curvature. One can list a number of exciting studies, concerning fundamental physics issues, that could be made using a large volume TPC and low energy antineutrinos: 1) The oscillation length involving the small angle of the neutrino mixing matrix, directly measured in this disappearance experiment, is fully contained inside the detector. Measuring the counting rate of neutrino-electron elastic scattering as a function of the distance of the source will give a precise and unambiguous measurement of the oscillation parameters free of systematic errors. In fact first estimates show that even with a year's data taking a sensitivity of a few percent for the measurement of the above angle will be achieved. 2) The low energy detection threshold offers a unique sensitivity for the neutrino magnetic moment which is about two orders of magnitude beyond the current experimental limit. 3) Scattering at such low neutrino energies has never been studied and any departure from the expected behavior may be an indication of new physics beyond the standard model. In this work we mainly focus on the various theoretical issues involved including a precise determination of the Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia, June 23, 200

    Efficacy of escitalopram in the treatment of social anxiety disorder: A meta-analysis versus placebo

    No full text
    Escitalopram is the most selective of the serotonin reuptake inhibitor (SSRI) antidepressants. We conducted a meta-analysis of placebo-controlled studies where escitalopram was used to treat patients with social anxiety disorder (SAD). Data from all randomised, double-blind placebo-controlled studies in SAD with escitalopram from both specialist settings and general practice were used. Patients met the DSM-IV criteria for SAD, ?18 years old, Liebowitz Social Anxiety Scale (LSAS) ?60. The primary outcome measure was the estimated treatment difference in LSAS total score at Week 12. Secondary outcome measures included the estimated treatment difference in the Clinical Global Impression-Severity (CGI-S) score at Week 12. A total of 1598 patients from 3 randomised controlled trials were included in the analyses. Escitalopram (n=1,061) was superior to placebo (n=537), with an estimated treatment difference on the LSAS of ?9.2 points (95%CI: [?14.4; ?4.0], p&lt;0.01) (escitalopram 5 mg/day), ?4.6 points (95%CI: [?8.1; ?1.0], p&lt;0.01) (escitalopram 10 mg/day), ?10.1 points (95%CI: [?13.7; ?6.5], p&lt;0.01) (escitalopram 20 mg/day) and ?7.3 points (95%CI: [?12.3; ?2.2], p&lt;0.01) (escitalopram 10-20 mg/day). For the CGI-S, the corresponding values were ?0.55 points (95%CI: [?0.79; ?0.31], p&lt;0.01) (escitalopram 5 mg/day), ?0.26 points (95%CI: [?0.42; ?0.10], p&lt;0.01) (escitalopram 10 mg/day), ?0.48 points (95%CI: [?0.64; ?0.31], p&lt;0.01) (escitalopram 20 mg/day) and ?0.29 points (95%CI: [?0.51; ?0.07], p&lt;0.05) (escitalopram 10-20 mg/day). The withdrawal rate due to adverse events was 7.2% for escitalopram, compared with 4.3% for placebo (p&lt;0.05). In this meta-analysis, all doses of escitalopram showed significant superiority in efficacy versus placebo in the treatment of patients with SAD
    corecore