8,766 research outputs found

    Voyager and the origin of the solar system

    Get PDF
    A unified model for the formation of regular satellite systems and the planetary system is outlined. The basis for this modern Laplacian theory is that there existed a large supersonic turbulent stress arising from overshooting convective motions within the three primitive gaseous clouds which formed Jupiter, Saturn, and the Sun. Calculations show that if each cloud possessed the same fraction of supersonic turbulent energy, equal to about 5% of the cloud's gravitational potential energy, then the broad mass distribution and chemistry of all regular satellite and planetary systems can be simultaneously accounted for. Titan is probably a captured moon of Saturn. Several predictions about observations made by Voyager 2 at Saturn are presented

    Saturn: Origin and composition of its inner moons and rings

    Get PDF
    The contraction of the primitive protosaturnian cloud, using ideas of supersonic turbulent convection was modeled. The model suggested that each of Saturn's inner moons, excepting Rhea, condensed above the ice-point of water and consists primarily of hydrous magnesium silicates. The satellite mean densities steadily increase towards the planet and the rocky moons are irregular in shape

    Neptune's Triton: A moon rich in dry ice and carbon

    Get PDF
    The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this pre-encounter publication, the possibility is quantified that Titron is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune's orbit. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rat of catalytic synthesis of CH4, CO2, and C(s) within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, Charon: each body consists of, by mass, 18 1/2 percent solid CO2 ice, 4 percent graphite, 1/2 percent CH4 ice, 29 percent methanated water ice and 48 percent of anhydrous rock. This mix has a density consistent with that of the Pluto-Charon system and yields a predicted mean density for Triton of 2.20 + or - 0.5 g/cu cm, for satellite radius equal to 1,750 km

    Breaking the color-reddening degeneracy in type Ia supernovae

    Full text link
    A new method to study the intrinsic color and luminosity of type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days from B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of color excess due to dust-extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic color variability. Such metric space is a good predictor of the epoch when the maximum in the B-V color curve is reached. Multivariate Partial Least Square (PLS) regression predicts the intrinsic B band light-curve and the intrinsic B-V color curve up to a month after maximum. This allows to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host-galaxy of SNe Ia is found, on average, to be consistent with typical Milky-Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with large sample publicly available. Future automated surveys as LSST will provide a large number of light curves. The analysis shows that observing accompaning spectra for a significative number of SNe will be important even in the case of "normal" SNe Ia.Comment: 11 pages, 11 figure

    Epigenetics, Nutrition, and Infant Health

    Get PDF
    The field of epigenetics is currently garnering a great deal of interest, exploring how our very molecular makeup in the form of modifications to the genome can be altered by factors as diverse as aging, disease, nutrition, stress, alcohol, and exposure to pollutants. Epigenetic changes have previously been implicated in the etiology of a variety of diseases, notably in the development of certain cancers, and inherited growth disorder syndromes, but the exploration of epigenetics’ role in fetal programming is still in its infancy. This chapter focuses on how nutritional exposures during pregnancy may affect the infant epigenome, and the impact that such modifications may have on the long-term health of the child. We start by describing some keys concepts in epigenetics and discuss windows of epigenetic plasticity in the context of the developmental origins of health and disease (DOHaD) hypothesis. We then review some of the key mechanisms by which nutrition can affect the epigenome, with a particular focus on the role of one-carbon metabolism. We finish by outlining some of the child health outcomes that have been linked to epigenetic dysregulation, and discuss possible next steps that need to be realized if insights into the basic science of epigenetics are to be translated into tangible public health benefits

    Haptoglobin genotype, haemoglobin and malaria in Gambian children

    Get PDF
    corecore