A new method to study the intrinsic color and luminosity of type Ia
supernovae (SNe Ia) is presented. A metric space built using principal
component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days
from B maximum is used as a set of predictors. This metric space is built to be
insensitive to reddening. Hence, it does not predict the part of color excess
due to dust-extinction. At the same time, the rich variability of SN Ia spectra
is a good predictor of a large fraction of the intrinsic color variability.
Such metric space is a good predictor of the epoch when the maximum in the B-V
color curve is reached. Multivariate Partial Least Square (PLS) regression
predicts the intrinsic B band light-curve and the intrinsic B-V color curve up
to a month after maximum. This allows to study the relation between the light
curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV
in the host-galaxy of SNe Ia is found, on average, to be consistent with
typical Milky-Way values. This analysis shows the importance of collecting
spectra to study SNe Ia, even with large sample publicly available. Future
automated surveys as LSST will provide a large number of light curves. The
analysis shows that observing accompaning spectra for a significative number of
SNe will be important even in the case of "normal" SNe Ia.Comment: 11 pages, 11 figure