2,557 research outputs found
Algorithmic options for joint time-frequency analysis in structural dynamics applications
The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage
Recommended from our members
Joint time-frequency representation of simulated earthquake accelerograms via the adaptive chirplet transform
Seismic accelerograms are inherently nonstationary signals since both the intensity and frequency content of seismic events evolve in time. The adaptive chirplet transform is a signal processing technique for joint time-frequency representation of nonstationary data. Analysis of a signal via the adaptive chirplet decomposition in conjunction with the Wigner-Ville distribution yields the so-called adaptive spectrogram which constitutes a valid representation of the signal in the time-frequency plane. In this paper the potential of this technique for capturing the temporal evolution of the frequency content of strong ground motions is assessed. In this regard, simulated nonstationary earthquake accelerograms compatible with an exponentially modulated and appropriately filtered Kanai-Tajimi spectrum are processed using the adaptive chirplet transform. These are samples of a random process whose evolutionary power spectrum can be represented by an analytical expression. It is suggested that the average of the ensemble of the adaptive chirplet spectrograms can be construed as an estimate of the underlying evolutionary power spectrum. The obtained numerical results show, indeed, that the estimated evolutionary power spectrum is in a good agreement with the one defined analytically. This fact points out the potential of the adaptive chirplet analysis for as a tool for capturing localized frequency content of arbitrary data- banks of real seismic accelerograms
Knowledge based cloud FE simulation of sheet metal forming processes
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions
Caza, recolección y pesca como estrategia de explotación de recursos en forestas tropicales lluviosas: los nukak de la Amazonía colombiana.
Sin resume
Ship-hull shape optimization with a T-spline based BEM-isogeometric solver
In this work, we present a ship-hull optimization process combining a T-spline based parametric ship-hull model and an Isogeometric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance. The surface representation of the ship-hull instances comprise one cubic T-spline with extraordinary points, ensuring C2 continuity everywhere except for the vicinity of extraordinary points where G1 continuity is achieved. The employed solver for ship wave resistance is based on the Neumann-Kelvin formulation of the problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface. The hydrodynamic solver along with the ship parametric model are subsequently integrated within an appropriate optimization environment for local and global ship-hull optimizations against the criterion of minimum resistance
An optimisation approch to determine the electromagnetic properties of lanthanum iron garnet filled PVDF-polymer composite at microwave frequencies
In this study, an optimization approach is shown to improve the accuracy of the Nicholson and Ross Weir (NRW) method to determine both the complex permittivity and permeability of the lanthanum iron garnet-filled PVDF-polymer nanocomposite loaded in a rectangular waveguide. The complex permittivity and permeability values were in turn used in Finite Element Method to calculate the S-parameter and were found to be in good agreement with the measured values
Recommended from our members
Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition
In this paper, the adaptive chirplet decomposition combined with the Wigner-Ville transform and the empirical mode decomposition combined with the Hilbert transform are employed to process various non-stationary signals (strong ground motions and structural responses). The efficacy of these two adaptive techniques for capturing the temporal evolution of the frequency content of specific seismic signals is assessed. In this respect, two near-field and two far-field seismic accelerograms are analyzed. Further, a similar analysis is performed for records pertaining to the response of a 20-story steel frame benchmark building excited by one of the four accelerograms scaled by appropriate factors to simulate undamaged and severely damaged conditions for the structure. It is shown that the derived joint time–frequency representations of the response time histories capture quite effectively the influence of non-linearity on the variation of the effective natural frequencies of a structural system during the evolution of a seismic event; in this context, tracing the mean instantaneous frequency of records of critical structural responses is adopted.
The study suggests, overall, that the aforementioned techniques are quite viable tools for detecting and monitoring damage to constructed facilities exposed to seismic excitations
Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks
This paper considers the nonparametric maximum likelihood estimator (MLE) for
the joint distribution function of an interval censored survival time and a
continuous mark variable. We provide a new explicit formula for the MLE in this
problem. We use this formula and the mark specific cumulative hazard function
of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This
result leads to necessary and sufficient conditions for consistency of the MLE
which imply that the MLE is inconsistent in general. We show that the
inconsistency can be repaired by discretizing the marks. Our theoretical
results are supported by simulations.Comment: 27 pages, 4 figure
Wave-resistance computation via CFD and IGA-BEM solvers : a comparative study
This paper delivers a preliminary comparative study on the computation of wave resistance via a commercial CFD solver (STAR-CCM+®) versus an in-house developed IGA-BEM solver for a pair of hulls, namely the parabolic Wigley hull and the KRISO container ship (KCS). The CFD solver combines a VOF (Volume Of Fluid) free-surface modelling technique with alternative turbulence models, while the IGA-BEM solver adopts an inviscid flow model that combines the Boundary Element approach (BEM) with Isogeometric Analysis (IGA) using T-splines or NURBS. IGA is a novel and expanding concept, introduced by Hughes and his collaborators (Hughes et al, 2005), aiming to intrinsically integrate CAD with Analysis by communicating the CAD model of the geometry (the wetted ship hull in our case) to the solver without any approximation
- …
