2,557 research outputs found

    Algorithmic options for joint time-frequency analysis in structural dynamics applications

    Get PDF
    The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage

    Knowledge based cloud FE simulation of sheet metal forming processes

    Get PDF
    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions

    Ship-hull shape optimization with a T-spline based BEM-isogeometric solver

    Get PDF
    In this work, we present a ship-hull optimization process combining a T-spline based parametric ship-hull model and an Isogeometric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance. The surface representation of the ship-hull instances comprise one cubic T-spline with extraordinary points, ensuring C2 continuity everywhere except for the vicinity of extraordinary points where G1 continuity is achieved. The employed solver for ship wave resistance is based on the Neumann-Kelvin formulation of the problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface. The hydrodynamic solver along with the ship parametric model are subsequently integrated within an appropriate optimization environment for local and global ship-hull optimizations against the criterion of minimum resistance

    An optimisation approch to determine the electromagnetic properties of lanthanum iron garnet filled PVDF-polymer composite at microwave frequencies

    Get PDF
    In this study, an optimization approach is shown to improve the accuracy of the Nicholson and Ross Weir (NRW) method to determine both the complex permittivity and permeability of the lanthanum iron garnet-filled PVDF-polymer nanocomposite loaded in a rectangular waveguide. The complex permittivity and permeability values were in turn used in Finite Element Method to calculate the S-parameter and were found to be in good agreement with the measured values

    Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks

    Full text link
    This paper considers the nonparametric maximum likelihood estimator (MLE) for the joint distribution function of an interval censored survival time and a continuous mark variable. We provide a new explicit formula for the MLE in this problem. We use this formula and the mark specific cumulative hazard function of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This result leads to necessary and sufficient conditions for consistency of the MLE which imply that the MLE is inconsistent in general. We show that the inconsistency can be repaired by discretizing the marks. Our theoretical results are supported by simulations.Comment: 27 pages, 4 figure

    Wave-resistance computation via CFD and IGA-BEM solvers : a comparative study

    Get PDF
    This paper delivers a preliminary comparative study on the computation of wave resistance via a commercial CFD solver (STAR-CCM+®) versus an in-house developed IGA-BEM solver for a pair of hulls, namely the parabolic Wigley hull and the KRISO container ship (KCS). The CFD solver combines a VOF (Volume Of Fluid) free-surface modelling technique with alternative turbulence models, while the IGA-BEM solver adopts an inviscid flow model that combines the Boundary Element approach (BEM) with Isogeometric Analysis (IGA) using T-splines or NURBS. IGA is a novel and expanding concept, introduced by Hughes and his collaborators (Hughes et al, 2005), aiming to intrinsically integrate CAD with Analysis by communicating the CAD model of the geometry (the wetted ship hull in our case) to the solver without any approximation
    corecore