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Abstract

The problem of optimal estimation of the heavy tail index is revisited from
the point of view of truncated estimation. A class of these estimators is in-
troduced having guaranteed accuracy based on a sample of �xed size [7]. The
optimality of considered log-gamma index estimators in the sense of a special
type risk function is established. The considered risk function makes possible
to optimize not only the asymptotic variances of the estimators, as well as used
for estimation of sample size. Optimization of the parameters of log-gamma
distribution is presented. Simulation results con�rm theoretical one's.

Keywords: Optimal parameter estimation, heavy tails, log-gamma distri-
bution, optimal convergence rate.

Introduction

This paper presents results of optimality for the parameter estimators of log-gamma
distribution, introduced in [7]. Some general properties of parameter estimators are
used only and are such that the considered class of estimators is su�ciently wide.

In this paper, we use the risk function of a special type which is a linear com-
bination of mean-square deviation of parameter estimators and sample size. The
requirement of both good parameter estimation quality and reasonable duration of
observations is formulated as a risk e�ciency problem. The risk function of similar
structure was proposed in [1], see also references therein. The criterion is given by a
certain loss function and optimization is performed based on it.

Further the loss and risk functions of the type proposed in [1] were used in,
e.g., [8, 9] for optimization of interpolators and predictors of a scalar AR(1) process
with unknown parameters. Similar optimization problem of the sequential parameter
estimator of AR(1) was considered in [3]. There was considered a risk function
de�ned on the basis of squared estimation error of sequential estimator of the dynamic
parameter.

Later the results of those papers were re�ned and extended to other stochastic
models. In particular, this approach was applied to construction of optimal adaptive
predictors of the stochastic processes related with discrete and continuous-time dy-
namical systems, see, e.g, [16, 2]. The proposed procedures are based on the so-called
truncated estimators which have been developed in order to estimate ratio type func-
tionals from a wide class by dependent observations and by samples of �xed size so
that they had guaranteed accuracy in the sense of the L2m-norm, m ≥ 1. Examples
of parameter estimation problems of discrete and continuous time systems on a time
interval of a �xed length are considered.
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The truncated estimators may keep asymptotic properties of the estimators they
are based upon. Another approaches do not guarantee prescribed estimation accuracy
when using samples of non-random �nite size and lead up to complicated analytical
problems in adaptive procedures. Applications of truncated estimators with the said
quality makes possible to optimize the risk function which is a linear combination of
sample mean of mean-square deviation of predictors and sample size.

Results of non-asymptotic non-parametric problems can be found also in [5, 6]
among others. In particular, they have investigated non-asymptotic properties of the
regression and density function kernel-type estimators.

It should be noted that �rst truncated parameter estimation method was applied
for construction of adaptive optimal predictors of VAR(1) in [10]. Then this method
was applied to more complicated stochastic systems. Among the processes considered
are stable multivariate discrete time AR(1), ARMA(1,1) and RCA(1), as well as
continuous time di�usion and time delayed processes, see, e.g., [2]. The proposed
procedure is shown to be asymptotically risk e�cient as the cost of prediction error
tends to in�nity.

1 Log-gamma density function

Consider the parameter estimation problem based on i.i.d. observations X1, . . . , Xn

with the log-gamma density function

f(x) = Cfx
−(γ+1) logβ−1 x, x ≥ 1.

Our main aim is to prove the optimality of the truncated estimators βn, γn and
θn of the parameters β, γ and θ presented in [7] in the sense of the risk function
considered above.

To de�ne the truncated estimators we introduce, similar to [7] for some given
a > 0 the functional

Φ(a) = E logaX1.

Using the de�nition of f(x) according to [7] we have

Φ(a) =
γ

β + a
Φ(a+ 1).

Analogously for a given b 6= a,

Φ(b) =
γ

β + b
Φ(b+ 1).

Thus
βΦ(a)− γΦ(a+ 1) = −aΦ(a),

βΦ(b)− γΦ(b+ 1) = −bΦ(b)

and the solution of this system has the form

β =
bΦ(b)Φ(a+ 1)− aΦ(a)Φ(b+ 1)

∆a,b

,
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γ =
(b− a)Φ(a)Φ(b)

∆a,b

,

as well as
θ =

∆a,b

(b− a)Φ(a)Φ(b)
,

where
∆a,b = Φ(a)Φ(b+ 1)− Φ(b)Φ(a+ 1).

Now we de�ne the empirical functional estimator

Φn(a) =
1

n

n∑
k=1

logaXk

of Φ(a) and the truncated estimators βn, γn and θn (see also [7]) as follows

βn =
bΦn(b)Φn(a+ 1)− aΦn(a)Φn(b+ 1)

∆a,b(n)
· χ(|∆a,b(n)| ≥ log−1 n), (1)

γn =
(b− a)Φn(a)Φn(b)

∆a,b(n)
· χ(|∆a,b(n)| ≥ log−1 n), (2)

θn =
∆a,b(n)

(b− a)Φn(a)Φn(b)
· χ(|(b− a)Φn(a)Φn(b)| ≥ log−1 n), (3)

where
∆a,b(n) = Φn(a)Φn(b+ 1)− Φn(b)Φn(a+ 1).

From [7] it follows that the asymptotic normality property, de�ned in [7] is ful�lled
for the estimators γn, θn and βn with the rate αn =

√
n and the asymptotic variance

of n · γn is de�ned by equations

σ2
γ = (b− a)2∆−2

a,b · σ
2
1 + 2(b− a)2∆−3

a,b · σ2 + (b− a)2∆−4
a,b · σ

2
3, (4)

where

σ2
1 = Φ2(a)Φ(2b) + Φ(2a)Φ2(b) + 2Φ(a)Φ(b)Φ(a+ b)− 4Φ2(a)Φ2(b),

σ2 = −Φ(a)Φ(b+1)Φ(a+b)−Φ2(a)Φ(2b+1)+Φ(a)Φ(a+1)Φ(2b)−Φ(2a)Φ(b)Φ(b+1)

+Φ(a+ 1)Φ(b)Φ(a+ b) + Φ2(b)Φ(2a+ 1) + 4Φ2(a)Φ(b)Φ(b+ 1)− 4Φ(a)Φ(a+ 1)Φ2(b),

σ2
3 = Φ2(a)Φ2(b) · {Φ(2a)Φ2(b+ 1)− 4Φ2(a)Φ2(b+ 1) + Φ2(a)Φ(2(b+ 1))

+2Φ(a)Φ(b+ 1)Φ(a+ b+ 1) + Φ2(a+ 1)Φ(2b) + Φ2(b)Φ(2(a+ 1))− 4Φ2(a+ 1)Φ2(b)

+2Φ(a+ 1)Φ(b)Φ(a+ b+ 1)− 2Φ(a+ 1)Φ(b+ 1)Φ(a+ b)− 2Φ(a)Φ(a+ 1)Φ(2b+ 1)

+8Φ(a)Φ(b)Φ(a+ 1)Φ(b+ 1)− 2Φ(2a+ 1)Φ(b)Φ(b+ 1)− 2Φ(a)Φ(b)Φ(a+ b+ 2)}.
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Consider the case of known β. The parameter Gamma can be represented in the
form

γ = (β + a)
Φ(a)

Φ(a+ 1)
,

the estimator is de�ned as

γn = (β + a)
Φn(a)

Φn(a+ 1)
· χ(Φn(a+ 1) ≥ log−1 n)

and its asymptotic variance is equal to

σ2
γ = (β + a)2 Φ(2a)Φ(a+ 1) + Φ2(a)Φ(a+ 1)Φ(2(a+ 1))− 2Φ(a)Φ(2a+ 1)

Φ3(a+ 1)
(5)

Consider the optimization procedure of the parameter estimation of log-gamma
distribution.

De�ne for an estimator γn of parameter γ the loss function

Ln = A(γn − γ)2 + n.

Parameter A stands for a cost of mean square quality of the estimator γn of parameter
γ and n is a sample size. We suppose that the cost of observations is included in the
de�nition A (see, for comparison, [1]).

The corresponding risk function Rn = ELn has the form

Rn = AE(γn − γ)2 + n

and we solve the optimization problem

Rn → min
n

(6)

Consider two cases.

� Case of known asymptotic variance σ2 of γn.

Thus the principal term of the risk function has the form

Rn =
Aσ2

n
+ n.

For A large enough the optimal sample size is equal to

n0
A =
√
Aσ2, (7)

as well as the corresponding principal term of the risk function Rn0
A

R0
A :=

Aσ2

n0
A

+ n0
A = 2

√
Aσ2. (8)
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As follows the problem is solved if the number σ2 is known.

� Case of unknown σ2.

First de�ne the estimator σ2
n of the variance σ

2 as

σ2
n =

Φn(2a)Φn(a+ 1) + Φ2
n(a)Φn(a+ 1)Φn(2(a+ 1))− 2Φn(a)Φn(2a+ 1)

Φ3
n(a+ 1)

(9)

·(b+ a)2χ(Φn(a+ 1) ≥ log−1 n).

Since (7) is directly involved in the expression (8) for R0
A, the optimal sample

size cannot be obtained as before. Similarly to Konev and Lai (1995), Sriram (1988),
Sriram and Iaci (2014) and Kusainov and Vasiliev (2014), one uses the stopping time
NA as an estimator of n0

A replacing σ2 in its de�nition with the estimator σ2
n

NA = inf{n ≥ nA : n ≥ A1/2σA}, (10)

where σA = min{σnA , logA}, σn =
√
σ2
n. We use here in comparison with mentioned

above papers the estimator σA instead of σn to simplify the proofs. At the same time
all results remain true.

It should be noted that for A large enough the following property is ful�lled

E(σ2
A − σ2)2p ≤ 2rnA(p), (11)

where rn(p) is some deterministic sequence such that

A · rnA(p) = o(1) as A→∞.

Indeed, for, e.g., log2A− σ2 ≥ 1, using the Chebyshev inequality we have

E(σ2
A − σ2)2p = E(σ2

nA
− σ2)2pχ(σnA ≤ logA) + (log2A− σ2)P (σnA > logA)

≤ rnA(p) + (log2A− σ2)
E(σ2

nA
− σ2)2p

(log2A− σ2)2p
≤ 2rnA(p).

We prove the asymptotic equivalence of NA and noA in the almost surely and mean
senses (see Theorem 1 below) and the optimality of the adaptive estimation procedure
in the sense of equivalence of the obviously modi�ed risk

RA := ELNA = AE(γNA − γ)2 + ENA. (12)

Theorem 1. The observation numbers (10) and (7) and corresponding risk functions
(12) and (8) are asymptotically equivalent in the following sense: as A→∞

NA

noA
→ 1 a.s., (13)

ENA

noA
→ 1, (14)

RA

Ro
A

→ 1. (15)
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2 Simulation results

To illustrate the theoretical properties of the optimal adaptive procedure we give
some numerical results for log-gamma distribution. We obtained the estimators σ2

n

of the variance of parameter estimators. The results for di�erent values of n are
presented in Fig. 1. The horizontal line shows the asymptotic value of σ2.

Figure 1: Log-gamma distribution. γ = 1.666

The quantities CN and CR are given in Fig. 2, 3 where CN = ENA
noA

, CR = RA
RoA

.

Here n0
A, R

0
A are de�ned by (7, 8) and NA, RA � by (10, 12). Note that ENA and

RA were computed as an empirical average over 1000 Monte Carlo replications of the
experiment (for each value of A).

Figure 2: Log-gamma distribution. γ = 1.6666 CN - left, CR - right

The obtained numerical results are close to the theoretical properties of the pro-
posed adaptive procedure.

Conclusion

The paper presents the method of optimal parameter estimation of log-gamma distri-
bution. The truncated estimator is used to minimize the loss function which includes
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the weighed mean square deviation and the sample size. It is shown that the proposed
procedure is asymptotically e�cient.

The theoretical results are illustrated by numerical results which con�rm the op-
timality properties.
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